Regional Mathematical Olympiad-2011

Time : 3 hours

December 04, 2011

Instruction

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions. Maximum marks : 100
- Answer to each question should start on a new page. Clearly indicate the questions number.

1. Let $A B C$ be a triangle. Let D, E, F be points respectively on the segments $B C, C A, A B$ such that $A D, B E, C E$ concur at the point K. Suppose $B D / D C=B F / F A$ and $\angle A D B=\angle A F C$.
Prove that $\angle \mathrm{ABE}=\angle \mathrm{CAD}$.

Sol. $\quad \theta=\angle \mathrm{ADB}=\angle \mathrm{AFC} \Rightarrow \angle \mathrm{BFC}=\pi-\theta$
$\Rightarrow \mathrm{BDKF}$ is cyclic quadrilateral.
FK in chord of circle through B, D, K, F
$\Rightarrow \angle \mathrm{FBK}=\angle \mathrm{FDK}$
$\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{BF}}{\mathrm{FA}} \Rightarrow \triangle \mathrm{CBA}$ similar to $\triangle \mathrm{DBF}$
\Rightarrow FD parallel to AC
$\Rightarrow \angle \mathrm{FDK}=\angle \mathrm{DAC}$
$\Rightarrow \angle \mathrm{ABE}=\angle \mathrm{CAD} \quad$ Hence proved.

2. Let $\left(a_{1}, a_{2}, a_{3} \ldots, a_{2011}\right)$ be a permutation (that is a rearrangement) of the numbers 1, 2, $3 \ldots, 2011$.

Show that there exist two numbers j, k. such that $1 \leq j<k \leq 2011$ and $\left|a_{j}-j\right|=\left|a_{k}-k\right|$.

Sol. Total numbers $\boldsymbol{\rightarrow} 2011$
Total number of a's $\rightarrow 2011$
difference (a_{i} - i) may be from 0 to 2010.
Case-1 If difference is not zero
means $\mathrm{a}_{\mathrm{i}}-\mathrm{i} \neq 0$
$a_{i} \neq \mathrm{i}$
total differences = 2010
Numbers = 2011
Hence two numbers will have same difference
Case-2 If difference is zero

3. A natural number n is chosen strictly between two consecutive perfect square. The smaller of these two squares is obtained by subtracting k from n and the larger one is obtained by adding ℓ to n . Prove that $n-k \ell$ is a perfect square.
[12]
Sol. Let Squares are p^{2} and $(p+1)^{2}$
given $\mathrm{p}^{2}=\mathrm{n}-\mathrm{k}$
$(p+1)^{2}=n+\ell$
Now $n-k \ell$
$=n-\left(n-p^{2}\right)\left((p+1)^{2}-n\right)$
$=n-n(p+1)^{2}+n^{2}+p^{2}(p+1)^{2}-n p^{2}$
$=n-n p^{2}-2 n p-n+n^{2}-n p^{2}+p^{2}(p+1)^{2}$
$=n^{2}-2 n p^{2}-2 n p+p^{2}(p+1)^{2}$
$=n^{2}-2 n p(p+1)+p^{2}(p+1)^{2}$
$=[n-(p+1) p]^{2}$
Which is a perfect square.
4. Consider a 20-sided convex polygon K, with vertices $A_{1}, A_{2}, \ldots, A_{20}$ in that order. Find the number of ways in which three sides of K can be chosen so that every pair among them has at least two sides of K between them. (For example $\left(A_{1} A_{2}, A_{4} A_{5}, A_{11} A_{12}\right)$ is an admissible triple while $\left(A_{1} A_{2}, A_{4} A_{5}, A_{19} A_{20}\right)$ is not).

Sol. Any side can be selected in ${ }^{20} \mathrm{C}_{1}$ ways
Let x, y, z are gapes between two sides and
$x \geq 2, y \geq 2, z \geq 2$
also $x+y+z=17$
Let $x=t_{1}+2, \quad y=t_{2}+2$,
$z=t_{3}+2$
where $t_{1}, t_{2}, t_{3} \in W$
so total ways $\quad{ }^{11+3-1} \mathrm{C}_{3-1}={ }^{13} \mathrm{C}_{2}$
Now total required ways $=\frac{{ }^{20} \mathrm{C}_{1} \times{ }^{13} \mathrm{C}_{2}}{3}=520$

5. Let ABC be a triangle and let $\mathrm{BB}_{1}, \mathrm{CC}_{1}$ be respectively the bisectors of $\angle \mathrm{B}, \angle \mathrm{C}$ with B_{1} on AC and C_{1} on AB . Let E, F be the feet of perpendiculars drawn from A onto $B B_{1}, C C_{1}$ respectively. Suppose D is the point at which the incircle of $A B C$ touches $A B$. Prove that $A D=E F$.
[19]
Sol. Let radius of incircle $=r$
$\Rightarrow A I=r \operatorname{cosec} \frac{A}{2}$
$\angle \mathrm{BIC}=\pi-\left(\frac{\mathrm{B}}{2}+\frac{\mathrm{C}}{2}\right)=\frac{\pi}{2}+\frac{\mathrm{A}}{2}=\angle \mathrm{C}_{1} \mathrm{IB}_{1}$
$\Rightarrow \angle \mathrm{FAE}=\frac{\pi}{2}-\frac{\mathrm{A}}{2}$
If $A I$ is diameter of circle then this circle passes through $F \& E$ and center of this circle is O
$\Rightarrow \angle \mathrm{FOE}=\pi-\mathrm{A}$
Now In the \triangle FOE
$\mathrm{FE}^{2}=\mathrm{OF}^{2}+\mathrm{OE}^{2}-2 \mathrm{OF} . \mathrm{OF} \cos (\pi-\mathrm{A})$
$=\frac{A I^{2}}{4}+\frac{A I^{2}}{4}+\frac{A I^{2}}{2} \cos \mathrm{~A} \quad\left(\mathrm{OF}=\mathrm{OE}=\frac{\mathrm{AI}}{2}\right)$
$=\frac{A I^{2}}{2}(1+\cos A)$

$=A I^{2} \cos ^{2} \frac{A}{2}=r^{2} \operatorname{cosec}^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}$
$=r^{2} \cot ^{2} \frac{A}{2}$
$F E=r \cot \frac{A}{2}$
$I D=r$
$\ln \triangle \mathrm{ADI} \quad \angle \mathrm{DAI}=\frac{\mathrm{A}}{2}$
$\Rightarrow A D=r \cot \frac{A}{2}$
$\Rightarrow A D=F E$
6. Find all pairs (x, y) of real numbers such that $16^{x^{2}+y}+16^{x+y^{2}}=1$.

Sol. Let two numbers are $16^{x^{2}+y}, 16^{x+y^{2}}$ use A.M. \geq G.M.

$$
\begin{aligned}
& \frac{16^{x^{2}+y}+16^{x+y^{2}}}{2} \geq\left(16^{x^{2}+y} 16^{x+y^{2}}\right)^{1 / 2} \\
& \frac{1}{2} \geq\left(16^{x^{2}+x+y^{2}+y}\right)^{1 / 2} \\
& \Rightarrow 16^{x^{2}+x+y^{2}+y} \leq \frac{1}{4} \Rightarrow 4^{2\left(x^{2}+x+y+y^{2}\right) \leq 4^{-1}} \\
& 2\left(x^{2}+x+y^{2}+y\right) \leq-1 \\
& (x+1 / 2)^{2}+(y+1 / 2)^{2} \leq 0 \\
& \text { which is possible only if } \\
& x=-1 / 2, y=-1 / 2
\end{aligned}
$$

