Selection Test - BIMC 2013

April 07, 2013-9.00 am to 11.30 am

PART A: SHORT ANSWER QUESTIONS

Write only the final answer in the answer sheet provided.

1. N identical balls $(4 \leq N \leq 2013)$, numbered from 1 to N are placed in a box. Three balls are removed from the box; two of them have numbers which are not multiples of 3 while the third one has a number which is a multiple of 3 . Now the probability of randomly choosing a ball with a multiple of 3 is lower than it was originally. How many different values can N take?
2. Let a and b be two real numbers such that $\frac{2014 a+b}{a-b}=2013$. What values can $\frac{a}{b}$ take?
3. What are the integer 4-tuples (a, b, c, d) which satisfy the equation, $a \sqrt{ } 33+b \sqrt{ } 61+c=d \sqrt{ } 2013 ?$
4. Let $A B C$ be an isosceles triangle with base $B C$ and let D be the midpoint of $A C$. Provided that $B C D$ is also an isosceles triangle with base $C D$ and $B C=2$, what is the area of $\triangle A B C$?
5. The square $A B C D$ is drawn on a piece of paper. The paper is folded (along a straight line) so that B now coincides with the midpoint of $D C$. The side $B C$ is divided by the fold into two segments of lengths a and b, with $a \leq b$. What is $\frac{b}{a}$?
6. A set S contains all the four-digit numbers, all of which after deleting any digit turn into a three-digit number that is a divisor of the original number. How many elements does S have?
7. What is the sum of all the integers n such that $n^{2}+5 n+1$ is a perfect square?
8. An 8 by 8 board needs to be filled with letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D so that two unit squares with a side or a vertex in common contain different letters, and so that letters A and B have the follwoing property; if A or B borders X horizontally or vertically (X can be $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D), then on the opposite side there is another X (unless it is at the edge of the board). How many different ways are there to fill the board with the letters?

PART B: ESSAY QUESTIONS
Full written solutions are required. Use the booklets provided to write the answers. Use separate booklets for each question.

1. Consider the numbers $1,2, \ldots, n$. Find in terms of n, the largest integer t such that these numbers can be arranged in a row so that all consecutive terms differ by at least t. Justify your answer.
2. There are two bags containing balls. Initially there are m balls in one bag, and n in the other, where $m, n \geq 1$. Two different operations are allowed:
A : Remove an equal number of balls from each bag;
B : Double the number of balls in one bag.
Is it always possible to empty both bags after a finite sequence of operations? Justify your answer.
Operation B is now replaced with
B^{\prime} : Triple the number of balls in one bag.
Is it now possible to empty both bags after a finite sequence of operations? Justify your answer.
3. Let O be the circumcentre of $\triangle A B C$ and let $O B A^{\prime} C, O C B^{\prime} A$ and $O A C^{\prime} B$ be rhombuses.
Prove that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ intersect at a point M. Also, prove that M, O and the circumcentre O^{\prime} of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are collinear.
What can be concluded about the triangle when O and M coincide?
