Revised Syllabus for Classes VI to X - 2011

numbers (Millions..) (ii(a) Playing with Numbers: Simplification of brackets, Multiples and factors, divisibility rule of $2,3,4,5,6$, $8,9,10,11$. (All these through observing patterns. Children would be helped in deducing some and then asked to derive some that are a combination of the basic patterns of divisibility.) Even/odd and prime/composite numbers, Co-prime numbers, prime factorisation, every number can be written as products of prime factors. HCF and LCM, prime factorization and division method for HCF and LCM, the property $\mathrm{LCM} \times \mathrm{HCF}=$ product of two numbers. *LCM \& HCF of coprimes. All this is to be embedded in contexts that bring out the significance and provide motivation to the child for learning these ideas. ii(b) Importance of Zero, and its properties (iii) Whole numbers	- Fraction as an operator "of" - Reciprocal of a fraction and its use - Division of fractions - Word problems involving mixed fractions (related daily life also) - Introduction to rational numbers (with representation on number line) *difference between fraction and rational numbers. - Operations on rational numbers (all operations) - Representation of rational number as a decimal. - Word problems on rational numbers (all operations) - Multiplication and division of decimal fractions mass) - Word problems (including all operations)	Cubes, Cube roots. Introduction - Square and Square roots - Square roots using factor method and division method for numbers containing (a) no more than total 4 digits and (b) no more than 2 decimal places - Cubes and cubes roots (only factor method for numbers containing at most 3 digits) - Estimating square roots and cube roots. Learning the process of moving nearer to the required number. (iv) Playing with numbers - Writing and understanding a 2 and 3 digit number in generalized form $(100 a+10 b+c$, where a, b, c can be only digit 0-9) and engaging with various puzzles concerning this. (Like finding the missing numerals represented by alphabets in sums involving any of the four operations.)

$\mathrm{n}^{\text {th }}$ root of a real number. Recall of laws of exponents with integral powers. Rational exponents with positive real bases (to be done by particulars cases, allowing learner to arrive at the general laws).
Rationalisation (where precise meaning) of real numbers of the type (and their combinations)

Where x and y are natural numbers and a, b are integers.

negative integer reduces the value of the number) comparison of integers, ordering of integers. (v) Fractions: Revision of what a fraction is, Fraction as a part of whole, Representation of fractions (pictorially and on number line), fraction as a division, proper, improper \& mixed fractions, equivalent fractions, like , unlike fractions, comparison of fractions, addition and subtraction of fractions, word problems (Avoid large and complicated unnecessary tasks). (Moving towards abstraction in fractions) Like and Unlike fraction. Review of the idea of a decimal fraction, place value in the context of decimal fraction, inter conversion of fractions and decimal fractions (avoid recurring decimals at this stage), word problems involving addition and subtraction of decimals (two operations together on money,		

Ratio and Proportion (15 hrs) - Concept of Ratio Inverse ratio, compound ratio - Proportion as equality of two ratios - Unitary method (with only direct variation implied) - Word problems - Understanding ratio and proportion in Arithmetic	Ratio and Proportion hrs) - Ratio and proportion (revision) - Unitary method continued, consolidation, general expression. - Compound ratio : simple word problems - Percentage- an introduction. - Understanding percentage as a fraction with denominator 100 - Converting fractions and decimals into percentage and vice-versa. - Application to profit and loss (single transaction only) - Application to simple interest (time period in complete years).	Ratio and Proportion (25 hrs) - Problems involving applications on percentages, profit \& loss, overhead expenses, Discount, tax.(Multiple transactions) - Difference between simple and compound interest (compounded yearly up to 3 years or half-yearly up to 3 steps only), Arriving at the formula for compound interest through patterns and using it for simple problems. - Direct variation - Simple and direct word problems - Inverse variation -Simple and direct word problems Mixed problems on direct, inverse variation - Time \& work problemsSimple and direct word problems - Time \& distance : Simple and direct word problems	Trigonometry 1. Introduction to Trigonometry Trigonometry ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined); motivate the ratios, whichever are defined at 0° and 90°. Values (with proofs) of the trigonometric ratios of 30°, 45° and 60°. Relationships between the ratios.	Trigonometry 1. Introduction to Trigonometry Trigonometry Identities: Proof and applications of the identity $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$. Only simple identities to be given. Trigonometric ratios of complementary angles. 2. Heights and Distance Simple and believable problems on heights and distances. Problems should not involve more than two right triangles of elevation / depression should be only 30°, $45^{0}, 60^{0}$.

arc, chord ,sector, segment, semicircle, circumference, (ii) Understanding Elementary Shapes (2-D and 3-D): - Measure of Line segment - Measure of angles - Pair of lines Intersecting and perpendicular lines Parallel lines - Types of angles- acute, obtuse, right, straight, reflex, complete and zero angle iii) Constructions (using Straight edge Scale, protractor, compasses) - Drawing of a line segment - Construction of circle - Perpendicular bisector - Construction of angles (using protractor) - Angle $60^{\circ}, 120^{\circ}$ (Using Compasses) - Angle bisector- making angles of $30^{\circ}, 45^{\circ}, 90^{\circ}$ etc. (using compasses) - Angle equal to a given angle	superposition ex. Blades, stamps etc.. - Extend congruence to simple geometrical shapes ex. Triange, circles, - criteria of congruence (by verification only) - property of congruencies of triangles SAS, SSS, ASA, RHS Properties with figures - Construction of triangles (all models) iii- Quadrilaterals Quadrilateral-definition. - Quadrilateral, sides, angles, diagonals. - Interior, exterior of quadrilateral - Convex, concave quadrilateral differences with diagrams - Sum angles property (By verification), problems - Types of quadrilaterals - Properties of parallelogram, trapezium, rhombus, rectangle, square and kite. (iii) Symmetry - Recalling reflection symmetry	- Two adjacent sides, three angles - Three sides, two diagonals. - Three sides, two angles in between - Construction of parallelogram - Construction of trapezium - Construction of rhombus - Construction of rectangle - Construction of square Triangles and concurrent lines Concurrent lines, points of concurrencies, circumcentre, incentre, ortho-centre, centroid. (ii) Representing 3-D in 2-D - Identify and Match pictures with objects [more complicated e.g. nested, joint 2-D and 3-D shapes (not more than 2)]. - Drawing 2-D representation of 3-D objects (Continued and extended) - Counting vertices, edges \& faces \& verifying Euler's relation for 3-D figures with flat faces	point in common. II. Lines and Angles 1. (Motive) If a ray stands on a line, then the sum of the two adjacent angles so formed is 180° and the converse. 2. (Prove) If two intersect, the vertically opposite angles are equal. 3. (Motive) Results on corresponding angles, interior angles when a transversal intersects two parallel lines. 4. (Motive) Lines, which are parallel to given line, are parallel. 5. (Prove) The sum of the angles of a triangle is 180°. 6. (Motive) If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the interior opposite angles. III. Lines and Angles 1. (Motivate) Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS Congruence).	proportional and the triangles are similar. 4. (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar. 5. (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar. 6. (Motivate) If a perpendicular is drawn from the vertex of the right angle to the hypotenuse, the triangles on each side of the perpendicular are similar to the whole triangle and to each other. 7. (Prove) The ratio of the areas of two similar triangles is equal to the ratio of the squares on their corresponding sides. 8. (Prove) In a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides. 9. (Prove) In a triangle, if the

(using compass) - Drawing a line perpendicular to a given line from a point a) on the line b) outside the line. iv)Simple polygons (introduction) (Upto pentagon regulars as well as non regular). -v) Classification of triangles (on the basis of sides, and of angles) -vi) Identification of 3-D shapes: Cubes, Cuboids, cylinder, sphere, cone, prism (triangular), pyramid (triangular and square) Identification and locating in the surroundings - Elements of 3-D figures. (Faces, Edges and vertices) - Nets for cube, cuboids, cylinders, cones and tetrahedrons. (vii) Symmetry: (reflection) - Observation and identification of 2-D symmetrical objects for	- Idea of rotational symmetry, observations of rotational symmetry of 2-D objects. (900, 1200, 1800) - Operation of rotation through 900 and 1800 of simple figures. - Examples of figures with both rotation and reflection symmetry (both operations) - Examples of figures that have reflection and rotation symmetry and vice-versa Representing 3-D in 2-D: - Drawing 3-D figures in 2-D showing hidden faces. - Identification and counting of vertices, edges, faces, nets (for cubes cuboids, and cylinders, cones). - Matching pictures with objects (Identifying names)	(cubes, cuboids, tetrahedrons, prisms and pyramids) (iii)	2. (Prove) Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence). 3. (Motivate) Two triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruence). 4. (Motivate) Two right triangles are congruent if the hypotenuse and a side of one triangle are equal (respectively) to the hypotenuse and a side of the other triangle. 5. (Prove) The angles opposite to equal sides of a triangle are equal. 6. (Motivate) The sides opposite to equal angles of a triangle are equal. 7. (Motivate) Triangle inequalities and relation between 'angle and facing sides'; inequalities in a triangle. IV. Quadrilaterals 1. (Prove) The diagonal divides a parallelogram into	square on one side is equal to sum of the squares on the other two sides, the angles opposite to the first side is a right triangle. II. Circles Tangents to a circle motivated by chords drawn from points coming closer and closer to the point. 1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact. 2. (Prove) The lengths of tangents drawn from an external point to a circle are equal. III. Constructions 1. Division of a line segment in a given ratio (internally). 2. Tangent to a circle from a point outside it. 3. Construction of a triangle similar to a given triangle. 4. Construction of a similar quadrilateral.

reflection symmetry - Operation of reflection (taking mirror images) of simple 2-D objects - Recognising reflection symmetry (identifying axes)			two congruent triangles. 2. (Motivate) In a parallelogram opposite sides are equal and conversely. 3. (Motivate) In a parallelogram opposite angles are equal and conversely. 4. (Motivate) A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and equal. 5. (Motivate) In a parallelogram, the diagonals bisect each other and conversely. 6. (Motivate) In a triangle, the line segment joining the mid points of any two sides is parallel to the third side and (motivate) its converse. 7. Sum of interior angles, exterior angles of a polygon. Interior and exterior angles of a regular polygon. V. Area Review concept of area, recall area of a rectangle. 1. (Prove) Parallelograms on the same base and between the same parallels have the same area.

			remaining part of the circle. 5. (Motivate) Angles in the same segment of a circle are equal. 6. (Motivate) If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle. 7.(Motivate) The sum of the wither pair of the opposite angles of a cyclic quadrilateral is 180° and its converse. VII. Constructions 1. Construction of bisectors of a line segment and angle, $60^{\circ}, 90^{\circ}, 45^{\circ}$ angles etc, equilateral triangles. 2. Construction of cicum 3. Construction of a triangle given its base, sum / difference of the other two sides one base angles.	
Mensuration ($\mathbf{1 5} \mathbf{~ h r s) ~}$ CONCEPT OF PERIMETER AND INTRODUCTION TO AREA	Mensuration ($\mathbf{1 5} \mathrm{hrs}$) - Revision of perimeter, Idea of , Circumference of Circle Area	Mensuration (15 hrs) (iii) Area of a trapezium and quadrilateral. (ii) Surface area of a cube, cuboid,	Mensuration (15 hrs) I.Areas Area of a triangle using Heron's formula (without proof) and its application in	Mensuration I. Areas Related to Circles Motivate the area of a circle; area of sectors and segments of a circle. Problems based on

Introduction and general understanding of perimeter using many shapes. Shapes of different kinds with the same perimeter. Concept of area, Area of a rectangle and a square Counter examples to different misconcepts related to perimeter and area. Perimeter of a rectangle - and its special case - a square. Deducing the formula of the perimeter for a rectangle and then a square through pattern and generalisation.	Concept of measurement using a basic unit area of a square, rectangle, rhombus triangle, parallelogram and circle, area of rectangular paths and circular path.	(iii) Concept of volume, measurement of volume using a basic unit, volume of a cube, cuboid and cylinder (iv) Volume and capacity (measurement of capacity)	finding the area of a quadrilateral. II. Surface Areas and Volumes 1.Revision of surface area and volume of cube, cuboid. 2. Surface areas and volumes of shapes (including hemispheres) and right circular cylinders / cones.	areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of $60^{\circ}, 90^{\circ}$ and 120° only. Plane figures involving triangles, simple quadrilaterals and circle should be taken.) II. Surface Areas and Volumes 1.Problems on finding surface areas and volumes of any two of the following: cubes, cuboids, shapes, hemispheres and right circular cylinders / cones. Frustum of a cone. 2.Problems involving converting one type of metallic solid into another and other mixed problems. (Problems with combination of not more than two different solids be taken.)
Data handling hrs) (i) What is data - (ii) Collection and organisation of data - examples of organising it in tally marks and a table. (iii) Pictograph- Need for	Data handling hrs) (i) Collection and organisation of data - (ii) Mean, median and mode of ungrouped data -	Data handling (15 hrs) (iv) Scope and necessity of grouped data (v) preperation of frequency distribution table (vi) cumulastive frequency distribution table (vii) frequency	Data handling (15 hrs) Probability Feel of probability using data through experiments. Notion of chance in events like tossing coins, dice etc. Tabulating and counting occurrences of 1	Data handling (15 hrs) (Statistics) Revision of Mean, median and mode of ungrouped data Understanding, the concept of Arithmetic Mean, Median and Mode for classified data.

scaling in pictographs interpretation \& construction. (iv) Making bar graphs for given data interpreting bar graphs+.	understanding what they represent. Reading bar-graphs (iv) Constructing double bar graphs (v) iii) simple pie charts with reasonable data numbers	graphs(histogram, frequency polygon,frequency curve, cumulative frequency curves)	through 6 in a number of throws. Comparing the observation with that for a coin.Observing strings of throws, notion of randomness (iii) Consolidating and generalising the notion of chance in events like tossing coins, dice etc. Relating it to chance in life events. Visual representation of frequency outcomes of repeated throws of the same kind of coins or dice. Throwing a large number of identical dice/coins together and aggregating the result of the throws to get large number of individual events. Observing the aggregating numbers over a large number of repeated events. Comparing with the data for a coin. Observing strings of throws, notion of randomness Introduction to graphs (15 hrs) PRELIMINARIES: (i) Axes (Same units), Cartesian Plane	The meaning and purpose of AM, Median and Mode. Simple problems on finding Mean, Median and Mode for grouped / non-grouped data. Relationship between Mean, Median and Mode. Probability: Concept and definition of Probability. Simple problems (day to day life situation) on single events not using set notation.

$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { (ii) Plotting points for } \\ \text { different } \\ \text { kind of situations (perimeter } \\ \text { vs length for squares, area as a } \\ \text { function of side of a square, } \\ \text { plotting of multiples of } \\ \text { different numbers, simple } \\ \text { interest vs number of years } \\ \text { etc.) } \\ \text { (iii) Reading off from the } \\ \text { graphs } \\ - \text { Reading of linear graphs } \\ - \text { Reading of distance vs time } \\ \text { graph. } \\ \text { Coordinate geometry: } \\ \text { Co-ordinates of point. } \\ \text { Plotting of points in co- } \\ \text { ordinate axes (Cartesian } \\ \text { place). } \\ \text { Linking linear equation in two } \\ \text { variables of the type ax }+ \text { by }+ \\ \text { c=0 in the Cartesian co- }\end{array} \\ \text { ordinate system. } \\ \text { Graphical solution of system } \\ \text { of linear equation in two } \\ \text { variables. }\end{array}\right]$

