Revised Syllabus for Classes VI to X – 2011

Class – VI	Class – VII	Class – VIII	Class – IX	Class – X
Number System (60	Number System (50	Number System	Number System	Number System
hrs)	hrs)	(50 hrs)	Real numbers	1.Real numbers:
(i) Knowing our Numbers:	(i) Knowing our Numbers:	(i) Rational Numbers:	Review of representation of	Euclid's division lemma,
Consolidating the sense of	Integers	 Properties of rational 	natural numbers, integers,	Fundamental Theorem of
numberless up to 5 digits,	 Multiplication and division 	numbers.	rational numbers on the	Arithmetic – statements after
Size,	of	(including identities). Using	number line. Representation	reviewing work done earlier
estimation of numbers,	integers (through patterns).	general form of expression to	of terminating / non	and after illustrating and
identifying smaller, larger,	Division by zero is	describe properties	terminating recurring	motivating through examples.
etc. Place value	meaningless	Appreciation of properties.	decimals, on the number line	Proofs of results – irrationality
(recapitulation and extension),	 Properties of integers 	 Consolidation of operations 	through successive	of $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, decimal
connectives: use of symbols	(including	on	magnification. Rational	expansions of rational
=, <, > and use of brackets,	identities for addition &	rational numbers.	numbers as recurring /	numbers in terms of
word problems on number	multiplication, (closure,	 Representation of rational 	terminating decimals.	terminating / non-terminating
operations involving large	commutative, associative,	numbers on the number line	Examples of nonrecurring /	recurring decimals.
numbers up to a maximum of	inverse, distributive) (through	 Between any two rational 	non terminating decimals such	
5 digits in the answer after all	patterns). These would	numbers there lies another	as $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ etc. Existence of	2. Sets:
operations. This would	include examples from whole	rational number (Making	non-rational numbers	Sets and their representations
include	numbers as well. Involve	children see that if we take	(irrational numbers) such as	empty sets. Finite and infinite
conversions of units of length	expressing properties in a	two rational numbers then	$\sqrt{2}$, $\sqrt{3}$ and their representation	sets equal sets. Subsets,
&	general form. Construction of	unlike for whole numbers, in	on the number line.	subsets of the set of real
mass (from the larger to the	counterexamples,	this case you	Explaining that every real	numbers (especially intervals
smaller units), estimation of	including some by children.	can keep finding more and	number is represented by a	with notations). Power set,
outcome of number operations.	Counter examples like	more	unique point on the number	Universal set, Venn diagrams.
Introduction to a sense of the	subtraction is not	numbers that lie between	line, and conversely, every	Union and intersection of sets.
largeness of, and initial	commutative.	them.)	point on the number line	Difference of set. Compliment
familiarity with, large numbers	 Word problems including 	• Word problem (higher logic,	represents a unique real	of set.
up to 8 digits and	integers (all operations)	two operations, including	number.	
approximation of large	(ii) Fractions and rational	ideas	Existence of \sqrt{x} for a positive	
numbers)	numbers:	like area)	real number x (visual proof to	
• International system of	 Multiplication of fractions 	(ii) Squares, Square roots,	be emphasized). Definition of	

numbers (Millions)	• Fraction as an operator "of"	Cubes, Cube roots.	n th root of a real number.	
(ii(a) Playing with Numbers:	• Reciprocal of a fraction and	Introduction	Recall of laws of exponents	
Simplification of brackets,	its use	 Square and Square roots 	with integral powers. Rational	
Multiples and factors,	 Division of fractions 	 Square roots using factor 	exponents with positive real	
divisibility rule of 2, 3, 4, 5, 6,	 Word problems involving 	method and division method	bases (to be done by	
8, 9, 10, 11.	mixed	for	particulars cases, allowing	
(All these through observing	fractions (related daily life	numbers containing (a) no	learner to arrive at the general	
patterns. Children would be	also)	more	laws).	
helped in deducing some and	 Introduction to rational 	than total 4 digits and (b) no	Rationalisation (where precise	
then asked to derive some that	numbers (with representation	more than 2 decimal places	meaning) of real numbers of	
are a	on number line)	• Cubes and cubes roots (only	the type (and their	
combination of the basic	*difference between fraction	factor method for numbers	combinations)	
patterns	and rational numbers.	containing at most 3 digits)		
of divisibility.) Even/odd and	 Operations on rational 	• Estimating square roots and	Where x and y are natural	
prime/composite numbers,	numbers	cube roots. Learning the	numbers and a, b are integers.	
Co-prime numbers, prime	(all operations)	process		
factorisation, every number	 Representation of rational 	of moving nearer to the		
can be written as products of	number as a decimal.	required number.		
prime	 Word problems on rational 	(iv) Playing with numbers		
factors. HCF and LCM, prime	numbers (all operations)	• Writing and understanding a		
factorization and division	 Multiplication and division 	2		
method	of	and 3 digit number in		
for HCF and LCM, the	decimal fractions	generalized		
property	• Conversion of units (length	form $(100a + 10b + c)$, where		
$LCM \times HCF = product of two$	&	a,		
numbers. *LCM & HCF of	mass)	b, c can be only digit 0-9) and		
coprimes. All this is to be	Word problems (including	engaging with various puzzles		
embedded in contexts that	all	concerning this. (Like finding		
bring out the significance and	operations)	the		
provide motivation to the		missing numerals represented		
child for learning these ideas.		by		
ii(b) Importance of Zero, and		alphabets in sums involving		
its properties		any		
(iii) Whole numbers		of the four operations.)		

Natural numbers, whole	Children	
numbers	to solve and create problems	
numbers,	and puzzles	
	and puzzles.	
(closure, commutative,	• Number puzzles and games	
associative, distributive,	• Deducing the divisibility test	
additive identity,	rules of 2, 3, 5, 9, 10 for a two	
multiplicative identity),	or three-digit number	
number line. Seeing patterns,	expressed	
identifying and formulating	in the general form.	
rules to be done by children.	Logic behind	
(As familiarity with algebra	divisibility laws of	
grows, the child can express	2,3,4,5,6,7,8,9	
the generic		
pattern.).		
Utility of properties in		
fundamental operations		
(iv) Negative Numbers and		
Integers How negative		
numbers arise, models of		
negative numbers, connection		
to		
daily life, ordering of negative		
numbers, representation of		
negative numbers on number		
line. Children to see patterns,		
identify and formulate rules.		
What are integers.		
identification of integers on		
the number line operation of		
addition and subtraction of		
integers, showing the		
operations		
on the number line (addition		
of		
01		

negative integer reduces the		
value of the number)		
comparison of integers,		
ordering of integers.		
(v) Fractions:		
Revision of what a fraction is,		
Fraction as a part of whole,		
Representation of fractions		
(pictorially and on number		
line),		
fraction as a division, proper,		
improper & mixed fractions,		
equivalent fractions, like,		
unlike fractions, comparison		
of fractions, addition and		
subtraction of fractions, word		
problems (Avoid large and		
complicated unnecessary		
tasks).		
(Moving towards abstraction		
in		
fractions) Like and Unlike		
fraction.		
Review of the idea of a		
decimal		
fraction, place value in the		
context of decimal fraction,		
inter conversion of fractions		
and decimal fractions (avoid		
recurring decimals at this		
stage), word problems		
involving addition and		
subtraction of decimals (two		
operations together on money,		

mass, length, temperature)				
Algebra (15	(20 hrs)	(20 hrs)	Definition of a polynomial in	Algebra
hrs)	Exponents and powers	Exponents & powers	one variable, its coefficients,	1. Polynomials
INTRODUCTION TO	Introduction	(ii) Powers	with examples and counter	Zeros of a polynomial.
ALGEBRA	Meaning of x in a^x where a ϵ	• Integers as exponents.	examples, its terms, zero	Relationship between zeros
 Introduction to variable 	Z	 Laws of exponents with 	polynomial. Constant, linear,	and coefficients of a
through	• Laws of exponents (through	integral	quadratic, cubic polynomials;	polynomial with particular
patterns and through	observing patterns to arrive at	powers	monomials, binomials,	reference to quadratic
appropriate	eneralization.)	(ii) Algebraic Expressions	trinomials. Zero / roots of a	polynomials. Statement and
word problems and	(ii) $a^m a^n = a^{m \cdot + n}$	 Multiplication and division 	polynomial / equation. State	simple problems on division
generalizations (example 5 \times	(ii) • $(a^m)^{\cdot n} = a^{mn}$	of	and motivate the Remainder	algorithm for polynomials
1 = 5 etc.)	(iii) $a^m/a^n = a^{m-n}$, where $m-n \in$	algebraic exp.(Coefficient	Theorem with examples and	with real coefficients.
• Generate such patterns with	Ν	should	analogy to integers. Statement	2. Pair of Linear Equations
more examples.	$(iv) a^m . b^m = (ab)^m$	be integers)	and proof of the Factor	in Two Variables
 Introduction to unknowns 	(v) number with exponent	• Some common errors (e.g. 2	Theorem. Factorisation of	Pair of linear equations in two
through examples with simple	zero	+	ax^2+bx+c , $a \neq 0$ where a, b, c	variables. Geometric
contexts (single operations)	vi)Decimal number system	$x \neq \Box 2x, 7x + y \neq \Box 7xy$)	are real numbers and of cubic	representation of different
• Number forms of	vii) Expressing large number	• Identities $(a \pm b)2 = a2 \pm 2ab$	polynomials using the Factor	possibilities of solutions /
even and odd (2n,	in standard form	+ b2,	Theorem.	inconsistency.
2n+1)	ALGEBRAIC	$a^{2} - b^{2} = (a - b)(a + b)$	Recall of algebraic	Algebraic conditions for
	EXPRESSIONS	Factorisation (simple cases	expressions and identities.	number of solutions. Solution
	Introduction	only)	Further identities of the type:	of pair of linear equations in
	Generate algebraic	as examples the following		two variables algebraically -
	expressions	types		by substitution, by elimination
	(simple) involving one or two	$a(x + y), (x \pm y)2, x2 - y2,$	And their use in factorization	and by cross multiplication.
	variables	(x + a).(x + b)	of polynomials. Simple	Simple situational problems
	 Identifying constants, 	Simple equations	expressions reducible to these	must be included. Simple
	coefficient, powers	 Solving linear equations in 	polynomials.	problems on equations
	• Like and unlike terms,	one	Linear Equations in Two	reducible to linear equations
	degree of	variable in contextual	Variables	may be included.
	expressions e.g., x^2y etc.	problems	Recall of linear equations in	3. Quadratic Equations
	(exponent≤• 3, number of	involving multiplication and	one variable. Introduction to	Standard form of a quadratic
	variables)	division (word problems)	the equation in two variables.	equation $ax^2+bx+c=0$, $(a \neq 0)$.
	 Addition, subtraction of 	(avoid	Prove that a linear equation in	Solutions of quadratic

Ratio and Proportion (15	Ratio and Proportion (20	Ratio and Proportion	Trigonometry	Trigonometry
hrs)	hrs)	(25 hrs)	1. Introduction to	1. Introduction to
Concept of Ratio	 Ratio and proportion 	 Problems involving 	Trigonometry	Trigonometry
Inverse ratio, compound ratio	(revision)	applications on	Trigonometry ratios of an	Trigonometry Identities:
• Proportion as equality of two	• Unitary method continued,	percentages, profit & loss,	acute angle of a right-angled	Proof and applications of the
ratios	consolidation, general	overhead expenses, Discount,	triangle. Proof of their	identity $\sin^2 A + \cos^2 A = 1$.
• Unitary method (with only	expression.	tax.(Multiple transactions)	existence (well defined);	Only simple identities to be
direct	• Compound ratio : simple	 Difference between simple 	motivate the ratios, whichever	given. Trigonometric ratios of
variation implied)	word problems	and	are defined at 0° and 90° .	complementary angles.
Word problems	• Percentage- an introduction.	compound interest	Values (with proofs) of the	2. Heights and Distance
Understanding ratio	• Understanding percentage as	(compounded yearly up to 3	trigonometric ratios of 30° ,	Simple and believable
and proportion in	а	years or half-yearly up to 3	45° and 60°. Relationships	problems on heights and
Arithmetic	fraction with denominator 100	steps	between the ratios.	distances. Problems should
	 Converting fractions and 	only), Arriving at the formula		not involve more than two
	decimals into percentage and	for		right triangles of elevation /
	vice-versa.	compound interest through		depression should be only 30° ,
	• Application to profit and	patterns and using it for		45°, 60°.
	loss	simple		
	(single transaction only)	problems.		
	• Application to simple	• Direct variation – Simple		
	interest	and		
	(time period in complete	direct word problems		
	years).	• Inverse variation – Simple		
		ding at second much large		
		Mined methods on direct		
		inverse veriation		
		• Time & work problems		
		Simple		
		and direct word problems		
		• Time & distance · Simple		
		and direct word problems		
		and direct word problems		

Geometry (65 hrs)	Geometry (60 hrs)		Coordinate geometry	Coordinate geometry
Basic geometrical ideas	Understanding shapes:	Geometry (40 hrs)	The Cartesian plane,	Lines (In two-dimensions)
(2-D):	• Pairs of angles (linear,	(i) Understanding shapes:	coordinates of a point names	Review the concepts of
Introduction to geometry. Its	supplementary,	 Properties of quadrilaterals 	and terms associated with the	coordinate geometry done
linkage with and reflection in	complementary,	Revision –	coordinate plane, notations,	earlier including graphs of
everyday experience.	adjacent, vertically opposite)	 Properties of parallelogram 	plotting points in the plane,	linear equations. Awareness
• Line, line segment, ray.	(verification and simple proof	(Ву	graph of linear equations as	of geometrical representation
• Open and closed figures.	of vertically opposite angles)	verification)	examples; focus on linear	of quadratic polynomials.
 Interior and exterior of 	 Properties of parallel lines 	(i) Opposite sides of a	equations of the type $ax + by$	Distance between two points
closed	with	parallelogram are equal,	+ c = 0 by writing it as $y = c$	and section formula (internal).
figures.	transversal (alternate,	(ii) Opposite angles of a	and linking with the chapter	Area of a triangle.
 Curvilinear and linear 	corresponding, interior,	parallelogram are equal,	on linear equations in two	
boundaries	exterior	(iii) Diagonals of a	variables.	
• Angle — Vertex, arm,	angles)	parallelogram	Geometry	Geometry
interior	(ii) Triangles:	bisect each other. [Why (iv),	I. Introduction to Euclid's	I. Triangles
and exterior,	• Definition of triangle.	(v)	Geometry	Definitions, examples,
• Triangle — vertices, sides,	• Types of triangles acc. To	and (vi) follow from (ii)]	History – Euclid and geometry	counterexamples of similar
angles,	sides and angles	(iv) Diagonals of a rectangle	in India. Euclid's method of	triangles.
interior and exterior, altitude	• Properties of triangles	are	formalizing observed	1. (Prove) If a line is drawn
and	• Sum of the sides, difference	equal and bisect each other.	phenomenon onto rigorous	parallel to one side of a
median	of two sides.	(v) Diagonals of a rhombus	mathematics with definitions,	triangle to intersect the
• Quadrilateral — Sides,	• Angle sum property (with	bisect	common / obvious notions,	other two sides in district
vertices,	notion of proof and	each other at right angles.	axioms / postulates, and	points, the other two sides
angles, diagonals, adjacent	verification through paper	(vi) Diagonals of a square are	theorems. The five postulates of	are divided in the same
sides	folding, proofs, using	equal	Euclid. Equivalent versions of	ratio.
and opposite sides (only	property of parallel lines .	and bisect each other at right	the fifth postulate. Showing the	2. (Motivate) If a line divides
convex	difference between proof and	angles.	relationship between axiom and	two sides of a triangle in the
quadrilateral are to be	verification	Construction:	theorem.	same ratio, the line is
discussed),	• Exterior angle property of	Construction of	1. Given two district points,	parallel to the third side.
interior and exterior of a	triangle	Quadrilaterals:	there exists one and only	3. (Motivate) If in two
quadrilateral.	• Congruence:	• Four sides, one angle	one line through them.	triangles, the corresponding
• Circle — Centre, radius,	• congruence through	• Four sides, one diagonal	2. (Prove) Two district lines	angles are equal, their
diameter, interior and exterior,			cannot have more than one	corresponding sides are

arc, chord ,sector,	superposition ex. Blades,	• Two adjacent sides, three	point in common.	proportional and the
segment, semicircle.	stamps etc	angles	II. Lines and Angles	triangles are similar.
circumference,	• Extend congruence to simple	• Three sides two diagonals	1. (Motive) If a ray stands on	4. (Motivate) If the
(ii) Understanding	geometrical shapes ex.	• Three sides two angles in	a line, then the sum of the	corresponding sides of two
Elementary	Triange, circles,	between	two adjacent angles so	triangles are proportional,
Shapes (2-D and 3-D):	• criteria of congruence (by	• Construction of	formed is 180° and the	their corresponding angles
• Measure of Line segment	verification only)	parallelogram	converse.	are equal and the two
Measure of angles	• property of congruencies of	• Construction of trapezium	2. (Prove) If two intersect, the	triangles are similar.
• Pair of lines	triangles SAS, SSS, ASA,	Construction of rhombus	vertically opposite angles	5. (Motivate) If one angle of a
Intersecting and	RHS Properties with figures	Construction of monibus	are equal.	triangle is equal to one
perpendicular	•	Construction of square	3. (Motive) Results on	angle of another triangle
lines	• Construction of triangles	Triangles and concurrent	corresponding angles,	and the sides including
Parallel lines	(all models)	lines	interior angles when a	these angles are
• Types of angles- acute,	iii- Ouadrilaterals	Concurrent lines points of	transversal intersects two	proportional, the two
obtuse,	Ouadrilateral-definition.	concurrencies circumcentre	parallel lines.	triangles are similar.
right, straight, reflex,	• Ouadrilateral, sides, angles,	incentre ortho-centre	4. (Motive) Lines, which are	6. (Motivate) If a
complete	diagonals.	centroid	parallel to given line, are	perpendicular is drawn from
and zero angle	• Interior, exterior of	controla.	parallel.	the vertex of the right angle
iii) Constructions (using	quadrilateral	(ii) Representing 3-D in 2-D	5. (Prove) The sum of the	to the hypotenuse, the
Straight edge Scale,	• Convex. concave	Identify and Match pictures	angles of a triangle is 180°.	triangles on each side of the
protractor, compasses)	quadrilateral differences with	with	6. (Motive) If a side of a	perpendicular are similar to
• Drawing of a line segment	diagrams	objects [more complicated e.g.	triangle is produced, the	the whole triangle and to
• Construction of circle	• Sum angles property (By	nested, joint 2-D and 3-D	exterior angle so formed is	each other.
• Perpendicular bisector	verification), problems	shapes (not more than 2)].	equal to the sum of the	7. (Prove) The ratio of the
• Construction of angles	• Types of quadrilaterals	• Drawing 2-D representation	interior opposite angles.	areas of two similar
(using	 Properties of 	of	III. Lines and Angles	triangles is equal to the ratio
protractor)	parallelogram trapezium	3-D objects (Continued and	1. (Motivate) 1 wo triangles	of the squares on their
• Angle 60° , 120° (Using	rhombus rectangle square	extended)	are congruent if any two	corresponding sides.
Compasses)	and kite.	• Counting vertices, edges &	sides and the included	8. (Prove) In a right triangle,
• Angle bisector- making		faces	angle of one triangle is	the square on the
all gives $af 30^\circ 45^\circ 00^\circ ata$ (using	(iii) Symmetry	& verifying Euler's relation	the included angle of the	sum of the squares on the
or 50,45,90 etc. (using		for	the included angle of the	sum of the squares on the
	Recalling reflection	101	other triangle (SAS	other two sides

(using compass)	• Idea of rotational symmetry,	(cubes, cuboids, tetrahedrons,	2. (Prove) Two triangles are	square on one side is equal
• Drawing a line perpendicular	observations of rotational	prisms and pyramids)	congruent if any two angles	to sum of the squares on the
to	symmetry of 2-D objects.	(iii)	and the included side of one	other two sides, the angles
a given line from a point a) on	(900,		triangle is equal to any two	opposite to the first side is a
the line b) outside the line.	1200, 1800)		angles and the included	right triangle.
	Operation of rotation		side of the other triangle	
	through		(ASA Congruence).	II. Circles
iv)Simple polygons	900 and 1800 of simple		3. (Motivate) Two triangles	Tangents to a circle motivated
(introduction)	figures.		are congruent if the three	by chords drawn from points
(Upto pentagon regulars as	• Examples of figures with		sides of one triangle are	coming closer and closer to
well	both		equal to three sides of the	the point.
as non regular).	rotation and reflection		other triangle (SSS	1. (Prove) The tangent at any
•v) Classification of triangles	symmetry		Congruence).	point of a circle is
(on the basis of sides, and of	(both operations)		4. (Motivate) Two right	perpendicular to the radius
angles)	• Examples of figures that		triangles are congruent if	through the point of contact.
•vi) Identification of 3-D	have		the hypotenuse and a side	2. (Prove) The lengths of
shapes: Cubes, Cuboids,	reflection and rotation		of one triangle are equal	tangents drawn from an
cylinder, sphere, cone, prism	symmetry		(respectively) to the	external point to a circle are
(triangular), pyramid	and vice-versa		hypotenuse and a side of	equal.
(triangular and square)	Representing 3-D in 2-D:		the other triangle.	-
Identification and locating in	• Drawing 3-D figures in 2-D		5. (Prove) The angles opposite	III. Constructions
the	showing hidden faces.		to equal sides of a triangle	
surroundings	 Identification and counting 		are equal.	1. Division of a line segment
• Elements of 3-D figures.	of		6. (Motivate) The sides	in a given ratio (internally).
(Faces,	vertices, edges, faces, nets (for		opposite to equal angles of	2. Tangent to a circle from a
Edges and vertices)	cubes cuboids, and cylinders,		a triangle are equal.	point outside it.
• Nets for cube, cuboids,	cones).		7. (Motivate) Triangle	3. Construction of a triangle
cylinders,	 Matching pictures with 		inequalities and relation	similar to a given triangle.
cones and tetrahedrons.	objects		between 'angle and facing	4. Construction of a similar
(vii) Symmetry: (reflection)	(Identifying names)		sides'; inequalities in a	quadrilateral.
Observation and			triangle.	
identification			IV. Quadrilaterals	
of 2-D symmetrical objects			1. (Prove) The diagonal	
for			divides a parallelogram into	

reflection symmetry	two congruent triangles.
• Operation of reflection	2. (Motivate) In a
(taking	parallelogram opposite
mirror images) of simple 2-D	sides are equal and
objects	conversely.
• Recognising reflection	3. (Motivate) In a
symmetry	narallelogram opposite
(identifying axes)	angles are equal and
	conversely.
	4. (Motivate) A quadrilateral
	is a parallelogram if a pair
	of its opposite sides is
	narallel and equal
	5 (Motivate) In a
	narallelogram the
	diagonals bisect each other
	and conversely
	6 (Motivate) In a triangle the
	line segment joining the
	mid points of any two sides
	is parallel to the third side
	and (motivate) its converse
	7 Sum of interior angles
	exterior angles of a
	polygon Interior and
	exterior angles of a regular
	polygon
	V Area
	V. Alta Deview concept of area recall
	area of a rootangla
	1 (Drove) Devellelograms on the
	some base and between the
	same parallels have the same
	same paraners have the same
	area.

		2.(Motivate) Triangles on the	
		same base and between the	
		same parallels are equal in	
		area and its converse.	
		VI. Circles	
]	Through examples, arrive at	
		definitions of circle related	
		concepts of circle related	
		concepts, radius,	
		circumference, diameter, chord,	
	3	arc, subtended angle.	
	1	(Prove) Equal chords of a	
		circle subtend equal angles at	
		the centre and (motivate) its	
		converse	
		(Motivate) The perpendicular	
	Ē	from the centre of a circle to	
		a chord bisects the chord and	
		conversely the line drawn	
		through the centre of circle	
		to bisect a chord is	
		perpendicular to the chord	
		(Motivata) There is one and	
		(Motivate) There is one and	
		through three given non	
		Commear points.	
		S. (Wouvale) Equal chords of a	
		circle (or of congruent	
		circles) are equidistant from	
		the centre (s) and conversely.	
		+.(Prove) The angle subtended	
		by am arc at the centre is	
		double the angle subtended	
		by it at any point on the	

			 remaining part of the circle. 5. (Motivate) Angles in the same segment of a circle are equal. 6. (Motivate) If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle. 7. (Motivate) The sum of the wither pair of the opposite angles of a cyclic quadrilateral is 180° and its converse. VII. Constructions Construction of bisectors of a line segment and angle, 60°, 90°, 45° angles etc, equilateral triangles. Construction of cicum 3. Construction of a triangle given its base, sum / difference of the other two sides one base angles. 	
			sides one base angles.	
Mensuration (15 hrs)	Mensuration (15 hrs) • Revision of perimeter, Idea	Mensuration (15 hrs) (iii) Area of a trapezium and	Mensuration (15 hrs)	Mensuration
PERIMETER AND	of	quadrilateral.	Area of a triangle using	Motivate the area of a circle;
INTRODUCTION TO	, Circumference of Circle	(ii) Surface area of a cube,	Heron's formula (without	area of sectors and segments
AREA	Area	cuboid,	proof) and its application in	of a circle. Problems based on

Introduction and general	Concept of measurement	(iii) Concept of volume,	finding the area of a	areas and perimeter /
understanding of perimeter	using a	measurement of volume	quadrilateral.	circumference of the above
using	basic unit area of a square,	using a basic unit, volume of	II. Surface Areas and	said plane figures.
many shapes. Shapes of	rectangle, rhombus	a cube, cuboid and cylinder	Volumes	(In calculating area of
different	triangle, parallelogram and	(iv) Volume and capacity	1. Revision of surface area and	segment of a circle, problems
kinds with the same perimeter.	circle,	(measurement of capacity)	volume of cube, cuboid.	should be restricted to central
Concept of area, Area of a	area of rectangular paths and		2. Surface areas and volumes of	angle of $60^{\circ}, 90^{\circ}$ and 120°
rectangle and a square	circular path.		shapes (including	only. Plane figures involving
Counter			hemispheres) and right	triangles, simple quadrilaterals
examples to different			circular cylinders / cones.	and circle should be taken.)
misconcepts related				II. Surface Areas and
to perimeter and area.				Volumes
Perimeter of a rectangle – and				1. Problems on finding surface
its special case – a square.				areas and volumes of any
Deducing				two of the following: cubes,
the formula of the perimeter				cuboids, shapes,
for a				hemispheres and right
rectangle and then a square				circular cylinders / cones.
through				Frustum of a cone.
pattern and generalisation.				2. Problems involving
				converting one type of
				metallic solid into another
				and other mixed problems.
				(Problems with combination
				of not more than two
				different solids be taken.)
Data handling (10	Data handling (15	Data handling (15 hrs)	Data handling (15 hrs)	Data handling (15 hrs)
hrs)	hrs)	(iv) Scope and necessity of	Probability	(Statistics)
(i) What is data -	(i) Collection and organisation	grouped data	Feel of probability using data	Revision of Mean, median and
(ii) Collection and	of	(v) preperation of frequency	through experiments. Notion	mode of ungrouped data
organisation of	data –	distribution table	of chance in events like	
data - examples of organising	(11) Mean, median and mode	(vi) cumulastive frequency	tossing	Understanding, the concept of
It in tally marks and a table.	to	distribution table	coins, dice etc. Tabulating and	Arithmetic Mean, Median and
(111) Pictograph- Need for	ungrouped data –	(vii) frequency	counting occurrences of 1	Mode for classified data.

scaling in	understanding	graphs(histogram,	through 6 in a number of	The meaning and purpose of
pictographs interpretation &	what they represent.	frequency	throws. Comparing the	AM, Median and Mode.
construction.	Reading bar-graphs	polygon, frequency	observation with that for a	
(iv) Making bar graphs for	(iv) Constructing	curve, cumulative	coin.Observing strings of	Simple problems on finding
given	double bar	frequency curves)	throws, notion of randomness	Mean, Median and Mode for
data interpreting bar graphs+.	graphs		(iii) Consolidating and	grouped / non-grouped data.
	(v)		generalising	
	iii) simple pie charts with		the notion of chance in events	Relationship between Mean,
	reasonable data numbers		like tossing coins, dice etc.	Median and Mode.
			Relating it to chance in life	
			events. Visual representation	
			of	Probability: Concept and
			frequency outcomes of	definition of Probability.
			repeated throws of the same	
			kind of coins or dice.	Simple problems (day to day
			Throwing a large number	life situation) on single events
			of identical dice/coins	not using set notation.
			together and aggregating the	
			large	
			number of individual events	
			Observing the aggregating	
			numbers over a large number	
			of repeated events	
			Comparing with the data for	
			a coin Observing strings	
			of throws, notion of	
			randomness	
			Introduction to graphs	
			(15 hrs)	
			PRELIMINARIES:	
			(i) Axes (Same units),	
			Cartesian	
			Plane	

	(ii) Plotting points for	
	different	
	kind of situations (perimeter	
	vs length for squares, area as a	
	function of side of a square,	
	plotting of multiples of	
	different numbers, simple	
	interest vs number of years	
	etc.)	
	(iii) Reading off from the	
	graphs	
	• Reading of linear graphs	
	• Reading of distance vs time	
	granh	
	Coordinate geometry:	
	Co-ordinates of point	
	Plotting of points in co-	
	ordinate axes (Cartesian	
	nlace)	
	Linking linear equation in two	
	variables of the type as + by +	
	c = 0 in the Cartesian co	
	c = 0 in the Cartesian $co-$	
	Graphical solution of system	
	of linear equation in two	
	or integrequation in two	
	variables.	