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Many areas of pre-calculus math are only briefly covered in the standard high school curriculum
despite the vastness of the topic, but geometry is the best example of this. Many students learn
the basics, leaving them with only a glimpse into the world that is Euclidean geometry. I hope by
the end of today, all of you will have a feeling for the vastness of this topic, and at least have a
start to solving problems from this world.

Notes: Due to difficulties I have experienced trying to put geometric diagrams into LaTeX
documents, and to save space, no geometric diagrams appear below. I will attempt to put all
relavent diagrams on the board during the lecture. For similar reasons, where some textbooks use
the notation AB, we will always just say AB to mean the line, segment, or length of the segment.

We will begin where the curriculum often ends, with cyclic quadrilaterals.

1 Cyclic quadrilaterals

A cyclic quadrilateral, also known as an inscribed quadrilateral, is a quadrilateral that is inscribed in
a circle. That is, if A, B, C, and D lie on a circle in that order, then ABCD is a cyclic quadrilateral.
There are many things to prove with such quadrilaterals, usually requiring knowledge of inscribed
angle theorems. Here are four major results:

1. If X is the intersection of diagonals AC and BD, triangles AXD and BXC are similar.

2. A quadrilateral ABCD is cyclic if and only if ∠DAB + ∠BCD = 180◦. (CQ-1)

3. (Ptolemy’s Theorem) In cyclic quadrilateral ABCD, AC · BD = AB · CD + BC · DA.
Moreover, Ptolemy’s Inequality says that AC · BD > AB · CD + BC · DA if ABCD is not a
cyclic quadrilateral.

4. (Brahmagupta’s Formula) If the lengths of the sides of a cyclic quadrilateral are a, b, c, d
and the semiperimeter s = a+b+c+d

2 , then the area of the cyclic quadrilateral is equal to√
(s− a)(s− b)(s− c)(s− d). Note that Heron’s formula for the area of a triangle is a special

case of this.

To prove the first, we simply note that, ∠DAX = ∠XBC because they are both inscribed
angles subtending the same arc. Likewise, ∠ADX = ∠XCB, so "DAX ∼ "XBC, as desired.
The proof of the second result is left to the reader.1

Ptolemy’s Theorem has several very different proofs, but we will prove it when we get to Simson
lines later. For now, accept Brahmagupta’s Theorem as true. The proof is too long to write out here,
and you can read about it in Geometry Revisited by Coxeter and Greitzer. It is not surprisingly
similar to the proof of Heron’s formula, if you are familiar with that.

1In order to organize the various problems left to the reader in this handout, denote this as “CQ-1.”
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Here are a couple more examples of cyclic quadrilaterals in action:
CQ-2. From an arbitrary point M on leg BC of right triangle ABC perpendicular MN is dropped
on hypothenuse AB. Prove that ∠MAN = ∠MCN .
CQ-3. Prove that a trapezoid is cyclic if and only if it is isosceles.

2 Triangles

Much if not most of geometry takes place in the triangle, the simplest polygon. In generalized
notation, we use triangle ABC, with side lengths BC = a,CA = b, AB = c, area [ABC], altitudes
AD,BE,CF (with lengths ha, hb, hc) medians AA′, BB′, CC ′ (lengths ma,mb,mc), angle bisectors
AA1, BB1, CC1 (lengths la, lb, lc), orthocenter H, centroid G, incenter I, circumcenter O, excenters
IA, IB, IC , and generalized cevians AX, BY , and CZ. We discuss all of these parts of a triangle
below.

Note: We assume knowledge of the Laws of Sines and Cosines and Heron’s Formula. Basic
terminology of homothecies (or similarity transformations) will be provided in the lecture.

2.1 Cevians and Centers

A cevian is a line from one vertex to the opposite side (or an extension thereof). Examples include
the altitudes, medians, and angle bisectors.

2.1.1 Altitudes and the Orthocenter

An altitude AD in triangle ABC is a segment extending from vertex A perpendicular to line BC.
It is easy to see that if either angle at B or C is obtuse, AD lies outside the triangle; otherwise it
is within it.

Altitudes are most useful when computing areas, given by the formula [ABC] = aha = bhb =
chc. One major result is that each altitude length is inversely proportional to its corresponding
side length, which is easy to see. A notable special case is the altitude to the hypotenuse AB of a
right triangle, which has length hc = ab

c .
The altitudes all intersect at the orthocenter H, a result we will prove with Ceva’s Theorem.

This gives rise to cyclic quadrilaterals such as AEHF .
The bases of the altitudes form the orthic triangle DEF . One classic problem states that

the altitudes of the original triangle bisect the angles of the orthic triangle, making the original
orthocenter the incenter of DEF , as we’ll see later. In fact, that is our first problem relating to
altitudes, known here as A-1.

Most problems involving altitudes require no more complicated methods than angle chasing
and cyclic quadrilaterals reviewed above. All of the following problems use the notation introduced
above. Here they are:
A-2. (AIME II 2006/15)2 Given that x, y and z are real numbers that satisfy:

x =
√

y2 − 1
16

+
√

z2 − 1
16

y =
√

z2 − 1
25

+
√

x2 − 1
25

z =
√

x2 − 1
36

+
√

y2 − 1
36

2This isn’t technically an olympiad problem but still is an AIME #15!
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and that x + y + z = m√
n

where m and n are positive integers and n is not divisible by the square
of any prime, find m + n.
A-3. Prove that BD −DC = c2−b2

a .

2.1.2 Medians and the Centroid

A median AA′ connects vertex A to the midpoint A′ of side BC. Clearly, each median divides
the area of the original triangle in half, since [AA′C] = A′C·ha

2 = A′B·ha
2 = [AA′B]. Just like the

altitudes, the medians concur, at a point G known as the centroid.
When all three medians are drawn, six triangles are formed, GAB′, GAC ′, GBA′, GBC ′,

GCA′ and GCB′. An important result states that all six of these have the same area. The proof is
simple: First, [GAB′] = [GCB′] because GB′ is a median of "AGC. Similarly, [GBC ′] = [GAC ′]
and [GBA′] = [GCA′]. Now we can say that [ABB′] = 1

2 [ABC] = [ACC ′] and by subtracting
[AB′GC ′] we get opposite triangles [GCB′] = [GBC ′]. Similarly, [GBA′] = [GAB′] and by using
these five equalities, we deduce that all six triangles have equal areas.

Unlike the altitudes, the medians have plenty of features that stand alone:
M-1. Prove that AG = 2GA′.
M-2. Prove that if "ABC is on a Cartesian coordinate system, and A = (a1, a2), B = (b1, b2), and
C = (c1, c2), then G = (a1+b1+c1

3 , a2+b2+c2
3 ). In other words, G is the average of A, B and C.

M-3. Prove that the medial triangle, "A′B′C ′, is similar to "ABC and has an area of [ABC]/4.
M-4. Prove that G is the centroid of "A′B′C ′.
M-5. Prove that a triangle with two equal medians is isosceles.

2.1.3 Angle Bisectors and the Incenter

The final cevians we look at are the angle bisectors, or as some books call them, simply the bisectors.
A bisector AA1 is defined such that ∠BAA1 = ∠A1AC and A1 lies on side BC. Like the altitudes
and medians, the angle bisectors concur at a point known as the incenter I. Unlike them, we can
easily prove this fact without waiting until Ceva’s Theorem. We utilize an important fact about
bisectors: Any point on the bisectors of lines l1 and l2 is equidistant from each line.3 As a result,
we know that the distances from any point on AA1 to AB and AC are equal. The intersection I
of AA1 and BB1 is thus equidistant from AB and AC and from AB and BC, so it is equidistant
from AC and BC and lies on CC1.

The fact that the distances from I to each of the sides are equal gives rise to the incircle, a
circle centered at I with inradius r so that it is tangent to each of the sides.

Given a bisector AA1, it is easy to see that angles AA1B and AA1C are supplementary, and
thus have equal sines. By the Law of Sines, AB

BA1
= sin ∠AA1B

sin ∠BAA1
= sin ∠AA1C

sin ∠CAA1
= AC

CA1
. This result is

known as the Angle Bisector Theorem and has applications in many non-olympiad contests such
as AIME and ARML.
B-1. Prove that [ABC] = rs where s is the semiperimeter, or s = a+b+c

2 .
B-2. Prove the Angle Bisector Theorem in an alternative manner using the ratio [AA1B] : [AA1C].

2.1.4 Excenters

Suppose that instead of using the internal bisectors of ∠A, we used the external bisectors (perpen-
dicular to the internal ones). The three external bisectors would form a triangle IaIbIc with A on
IbIc, etc. Moreover, in similar ways to above, we can prove that A, I, A1 and Ia are collinear. Ia is

3The proof uses a reflection across each bisector which takes the diagram to itself. The converse is a bit harder.

3



equidistant from side BC and the extensions of sides AB and AC. (Prove as E-1!) Just as before
with the incenter, we can draw excircles centered at each of the excenters Ia, Ib, Ic tangent to the
sides or extensions. There is plenty to be said about the relationship between "IaIbIc and "ABC:
E-2. Prove that "ABC is the orthic triangle of "IaIbIc.
E-3. Prove that the tangent from B to the excircle opposite it has length s, the semiperimeter of
"ABC.

2.1.5 The Circumcenter

There is one last center that is not related to any cevians directly. That is the circumcenter O, the
center of the circumcircle, the circle passing through A, B, and C. This circle has circumradius
R. It is easy to see that O is the only point such that OA = OB = OC = R. The locus of points
such that OA = OB is the perpendicular bisector of AB, so O lies on that. The proof of the Law
of Sines uses this circle and the properties of inscribed angles.

Now that we have introduced the four major centers, we can prove many things:
C-1. Prove that O is the orthocenter of the medial triangle A′B′C ′.
C-2. Prove that G, H and O are collinear. This line is known as the Euler line. Moreover, prove
that GH = 2OG.
C-3. Prove that the reflections of the orthocenter across each of the sides lie on the circumcircle.
C-4. Prove that OI2 = R2 − 2Rr.

2.1.6 The Nine-Point Circle

Many of the proofs in the previous part involve the homothecy from ABC to DEF , taking the
centroid to itself and the circumcenter to the orthocenter. Let’s consider a new homothecy, with
scale of magnification 1/2 and center the orthocenter of the triangle. This takes the circumcircle to
a new circle, which we call the nine-point circle. From the definition, the midpoints of AH,BH,CH
lie on this circle. From C-3, the bases D,E, F of the altitudes also lie on it. In other words, it is the
circumcircle of the orthic triangle. Finally, consider trapezoid A′DC ′B′. Since C ′D = C ′A = A′B′
it is isosceles, and therefore (from CQ-3) cyclic. By applying the same argument to E and to
F , the circumcircles of the orthic and medial triangles are the same. We have proven that nine
points (yes, 9) associated with "ABC lie on one circle. These points are D,E, F, A′, B′, C ′, and
the midpoints of AH,BH, CH. That is why it is called the nine-point circle. Its center N , as can
be easily deduced above, is the midpoint of H and O, and also lies on the Euler line.
N-1. (Feuerbach’s Theorem) Prove that the nine-point circle is tangent to the incircle and the three
excircles.4

N-2. Prove that the radius of the nine point circle is equal to 1
2R.

2.1.7 Stewart’s Theorem

Having survived that half-semester of Euclidean geometry, we proceed to more fun stuff. Above,
we applied the Law of Sines to the triangles formed by the bisector of ∠A; now, we consider the
general cevian AX. Let AX = d, BX = m, and CX = n, so m + n = a. Using the Law of
Cosines on sides AB and AC of "ABX and "ACX respectively, we get cos ∠AXB = d2+m2−c2

2md

and cos ∠AXC = d2+n2−b2

2nd . These angles are supplementary, so their cosines sum to zero: 0 =
d2+m2−c2

2md + d2+n2−b2

2nd = d2n+m2n−c2n+d2m+n2m−b2m
2mnd =⇒ b2m + c2n = d2(m + n) + mn(m + n),

or the more memorable bmb + cnc = dad + man. We can apply these to the medians and angle
4In reality, the easiest way to prove this uses inversion, which we might do in February.
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bisectors in general:
S-1. Prove that m2

a = 2b2+2c2−a2

4 .
S-2. Prove that l2a = bc (b+c)2−a2

(b+c)2 .

2.2 Ceva’s Theorem

So how do we know the altitudes and medians concur? Ceva’s Theorem is the simplest, most
powerful method. It states that three cevians AX, BY , and CZ concur if and only if

BX

CX

CY

AY

AZ

BZ
= 1.

The proof follows: Suppose these three cevians concur at P . Then BX
CX = [ABX]

[ACX] = [PBX]
[PCX] = [ABP ]

[ACP ] .

Similarly, CY
AY = [BCP ]

[BAP ] and AZ
BZ = [CAP ]

[CBP ] and the result follows. To prove the other direction, simply
suppose they do not concur and let P be the intersection of AX and BY . Draw in CP , meeting
side AB at Z ′, then use the first direction to prove that X = X ′.

The proofs that the medians concur is now trivial.
CT-1. Using Ceva’s Theorem, reprove that the bisectors concur.
CT-2. Prove that the altitudes concur using Ceva’s Theorem.
CT-3. The incircle is tangent to the sides of the triangle at A2, B2, and C2, with A2 opposite A,
etc. Prove that AA2, BB2, and CC2 concur. This point is known as the Gergonne point.

2.3 Pedal Triangles and Simson Lines

A pedal triangle XY Z is formed from the bases of the perpendiculars from a point P to the sides
of a triangle ABC such that X lies on BC, etc. P can lie inside the triangle or outside it, or be on
the sides. We have some interesting results from this setup:
PT-1. Prove that if P = H, then "XY Z = "DEF , and if P = O, then "XY Z = "A1B1C1.
PT-2. Prove that Y Z = aAP

2R , ZX = bBP
2R , and XY = cCP

2R .
The case where P lies on the circumcircle produces an interesting result. Without loss of

generality, let PABC be a cyclic quadrilateral in that order. From the right angles, PY XC,
PXBZ, and PZAY are cyclic just like PABC. With ∠APC = 180◦ − ∠ABC = ∠XPZ and by
subtracting ∠APX, we get ∠XPC = ∠ZPA = ∠XY C = ∠ZY A. Therefore ∠XY C = ∠ZY A, so
X, Y, Z are collinear; the pedal triangle is degenerate. The line XY Z is known as the Simson line.

We still can apply PT-2, but this time XZ = XY + Y Z. Multiplying both sides by 2R, we get
bBP = cCP + aAP or AC · BP = AB · CP + BC · AP , which is Ptolemy’s Theorem! Given the
converse of Ptolemy’s Theorem and the triangle inequality, Ptolemy’s Inequality is easy to prove.

This is just the first of many things relating to Simson lines. Unfortunately, we simply don’t
have time to go as in-depth into them as Geometry Revisited does.

3 Circles

We’re out of the triangle but won’t be for long. Circles, besides being one of the simplest shapes,
have some astounding properties not taught in most high school math classes.

3.1 Power of a Point

Power of a Point Theorem states that if two lines through P intersect a circle, the first at A and
B and the second at C and D, then PA · PB = PC · PD. This value is known as the power of P
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with respect to the circle. In the limiting case where A = B, it becomes PA2.
Here’s the proof: Consider tangent PA and secant PCD. ∠ADC = ∠CAP since they subtend

the same arc. From this we get "PAD ∼ "PCA, so PA
PD = PC

PA , and the result follows. Now
consider two secants PCD and PEF . From the previous proof, PC · PD = PA2 = PE · PF , so
that case is done. Finally, when you have two tangents, PA and PB, then PA2 = PC ·PD = PB2

so we are done.
PP-1. Prove that the power of a point distant d from the center of the circle is d2 − r2.
PP-2. Prove that if quadrilateral ABCD is a circumscribed one, then AB + CD = BC + DA.

3.2 Radical Axis

The set of points with the same power with respect to two nonconcentric circles is known as those
circles’ radical axis. We will prove that the radical axis of two circles is a line perpendicular to the
line connecting their centers (RA-1) in the lecture. If the circles intersect, the radical axis goes
through the intersection points of the two circles.

If we have three circles, each pair has a radical axis. The intersection point of two of the axes
has the same power with respect to all three circles, so it lies on the third radical axis, implying
that they are concurrent at the radical center of those three circles.

This fails to work if the centers lie on a line. A special case exists when the two radical axes
are actually the same, so the third is as well. Expanding beyond three, a set of circles, every pair
of which has the same radical axis, is known as a pencil of coaxal circles.
RA-2. Prove that the midpoints of the four common tangents to two nonintersecting circles lie on
one line.
RA-3. Two nonconcentric circles are given. Prove that the set of centers of circles that intersect
both these circles at a right angle is their radical axis (without their common chord if the given
circles intersect).

4 The next geometry lesson

With that, those are the fundamentals of olympiad geometry. We went a little more in-depth into
triangles than we did into other topics, but this is not nearly all of geometry. There is so much
more, such as the Menelaus’ Theorem, spiral similarity, the Triangle Inequality, clines, barycentric
coordinates, and straightedge constructions. These represent the several more areas we could go
in depth on, but we have time for only one more, in February. At the end of today, we’ll vote on
what to do, from the following choices:

1. Geometric Inequalities (Ptolemy’s Inequality is an example of these.)

2. Loci and Constructions

3. Coordinate Systems and Vectors

4. Collinearity, Concurrence, and Projective Geometry (like Ceva’s Theorem)

5. Transformations

6. Inversion
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