REGIONAL MATH'S OLYMPIAD (FIRST ROUND) 2011 SOLUTIONS

1. Let $A B C D$ be a square of side 1 and P, Q, R, S be points inside the square such that $A P B$, BQC, DSA, CRD are equilateral triangles. Compute the area of PQRS

Sol:

Dropping PE $\perp \mathrm{AB}, \mathrm{QF} \perp \mathrm{BC}, \mathrm{RG} \perp \mathrm{DC}, \mathrm{SH} \perp \mathrm{AD}$.
Let the point of their intersection be ' 0 '.
$\mathrm{PE}^{2}+\mathrm{AE}^{2}=\mathrm{AP}^{2}$
$\mathrm{PE}^{2}=1^{2}-(0.5)^{2} \quad[\perp$ of an eq. Δ bisects the opp. side]
$\mathrm{PE}=\sqrt{0.75}=0.5 \sqrt{3}$
Similarly RG $=0.5 \sqrt{3}$
Since G and E are mid-points of $A B$ and CD,
$\mathrm{GE}\|\mathrm{AD}\| \mathrm{BC}$.
$P G+P E=A D$
$P G+0.5 \sqrt{3}=1$
$P G=1-0.5 \sqrt{3}$
Similarly RE $=1-0.5 \sqrt{3}$
$\therefore \mathrm{PG}=\mathrm{RE}$
$P R+P G+R E=B C$
$\mathrm{PR}+2-\sqrt{3}=1$
$\mathrm{PR}=\sqrt{3}-1$
$\mathrm{QF}^{2}+\mathrm{FC}^{2}=\mathrm{QC}^{2}$
$\mathrm{QF}^{2}+(0.5)^{2}=1^{2} \quad[\perp$ bisects the opp. sides $]$
$\mathrm{QF}^{2}=0.75$
$\mathrm{QF}=0.5 \sqrt{3}$
Similarly, SH $=0.5 \sqrt{3}$
$\mathrm{QH}+\mathrm{QF}=\mathrm{DC}$
$\mathrm{QH}+0.5 \sqrt{3}=1$
$\mathrm{QH}=1-0.5 \sqrt{3}$
Similarly SF = 1-0.5 $\sqrt{3}$
$\mathrm{SF}+\mathrm{QH}+\mathrm{QS}=1$
$2-\sqrt{3}+Q S=1$
$\mathrm{QS}=\sqrt{3}-1$
Since FH||DC,

$$
\begin{aligned}
& \mathrm{GO}=0.5=\mathrm{OE}=\mathrm{OH}=\mathrm{OF} \\
& \mathrm{PO}+\mathrm{GP}=\mathrm{GO} \\
& \mathrm{PO}+1-0.5 \sqrt{3}=0.5 \\
& \mathrm{PO}=0.5 \sqrt{3}-0.5
\end{aligned}
$$

$$
\text { Similarly } \mathrm{PO}=\mathrm{OQ}=0.5(\sqrt{3}-1)
$$

$$
\mathrm{OP}^{2}+\mathrm{OQ}^{2}=\mathrm{PQ}^{2}
$$

$$
0.5^{2}(\sqrt{3}-1)^{2}+0.5^{2}(\sqrt{3}-1)^{2}=\mathrm{PQ}^{2}
$$

$$
2\left[\frac{0.25}{100}(4-2 \sqrt{3})\right]
$$

$$
2-\sqrt{3}=P Q^{2}
$$

$$
P Q=\sqrt{2-\sqrt{3}}
$$

Similarly,
$S R^{2}=2-\sqrt{3}$
$S R=\sqrt{2-\sqrt{3}}$
Area of square (Since opp. sides are equal, diagonals bisect at 90° and are equal)
$=[\sqrt{2-\sqrt{3}}]^{2}$
$=2-\sqrt{3}$
2. Let ABC be an acute angled triangle and D be the foot of perpendicular from A on $B C$. Let AD meet the ortho-circle of the triangle ABC in K and let H be the orthocenter of the triangle ABC. Prove that $\mathrm{HD}=\mathrm{DK}$.

Sol:

In $\triangle \mathrm{HND}$ and $\triangle \mathrm{HMD}$
HN = HM (Radius)
HD $=\mathrm{HD}($ Common $)$
$\angle \mathrm{HDN}=\angle \mathrm{HDM}=90^{\circ}$ (each)
$\Delta \mathrm{HND} \cong \Delta \mathrm{HMD}$ [By R.H.S congruency]
$\Rightarrow \angle 3=\angle 4 \quad$ [By C.P.C.T.]
ND = DM [By C.P.C.T.]
Now, In Δ NDK and Δ MDK
ND = MD [from above C.P.C.T]
$\angle \mathrm{NDK}=\angle \mathrm{MDK}=90^{\circ}$ each
DK = DK common)
$\Delta \mathrm{NDK} \cong \Delta \mathrm{MDK}$
[By S.A.S. congruency]
$\angle 9=\angle 10$
[By C.P.C.T.]
$\mathrm{NK}=\mathrm{MK} \quad$ [By C.P.C.T.]
In \triangle NHM and $\quad \Delta$ NKM
$\mathrm{NH}=\mathrm{HM} \quad$ [Radius]
$\mathrm{NK}=\mathrm{MK} \quad$ [From C.P.C.T. (2)]
$\mathrm{HK}=\mathrm{HK} \quad$ [Common]
$\Delta \mathrm{NHM} \cong \Delta \mathrm{NKM}$ [By S.S.S. congruency]
$\therefore \angle 3+\angle 4=\angle 9+\angle 10$
(By C.P.C.T.)

Now
from (1) and (2) C.P.C.T.
$\angle 3=\angle 4$
$\angle 9=\angle 10$
\therefore Equation (3) becomes
$\angle 3+\angle 3=\angle 9+\angle 9$
$2 \angle 3=2 \angle 9$
$\Rightarrow \angle 3=\angle 9$
In Δ NHD and Δ NKD
$\angle 3=\angle 9 \quad$ [From 4]
$\angle \mathrm{NDH}=\angle \mathrm{NDK}=90^{\circ}$ each
$\mathrm{ND}=\mathrm{ND} \quad$ [common]
$\Delta \mathrm{NHD} \cong \Delta \mathrm{NKD}$
$\therefore \mathrm{HD}=\mathrm{DK}$
Hence the result.
3. If a, b, x, y are four distinct real numbers such that $a^{2}-b=b^{2}-c=c^{2}-d=d^{2}-a$, prove that $(a+b)(b+c)(c+d))(d+a)=1$

Sol:
$\mathrm{a}^{2}-\mathrm{b}=\mathrm{b}^{2}-\mathrm{c}$
[Given]
$a^{2}-b^{2}=b-c$.
$(a-b)(a+b)=b-c$
$(a+b)=\left[\frac{b-c}{a-b}\right]$
$b^{2}-c=c^{2}-d$
[Given]
$b^{2}-c^{2}=c-d$
$(b-c)(b+c)=c-d$
$\mathrm{b}+\mathrm{c}=\frac{\mathrm{c}-\mathrm{d}}{\mathrm{b}-\mathrm{c}}$
$c^{2}-\mathrm{d}=\mathrm{d}^{2}-\mathrm{a}$
$\mathrm{c}^{2}-\mathrm{d}^{2}=\mathrm{d}-\mathrm{a}$
$(c-d)(c+d)=(d-a)$
$(c+d)=\left[\frac{d-a}{c-a}\right]$
$\mathrm{d}^{2}-\mathrm{a}=\mathrm{a}^{2}-\mathrm{b}$
$\mathrm{d}^{2}-\mathrm{a}^{2}=\mathrm{a}-\mathrm{b}$
$(d-a)(d+a)=a-b$.
$d+a=\frac{a-b}{d-a}$
(Given)

On multiplying (1), (2), (3), (4)
$(a+b)(b+c)(c+d)(d+a)=\left(\frac{b-c}{a-b}\right)\left(\frac{c-d}{b-c}\right)\left(\frac{d-a}{c-d}\right)\left(\frac{a-b}{d-a}\right)$
$\therefore(a+b)(b+c)(c+d)(d+a)=1$.
Hence proved.
4. Find all pairs of integers (x, y) which satisfy the equation
$y^{2}\left(x^{2}+1\right)+x^{2}\left(y^{2}+16\right)=448$.
Sol:
$y^{2} x^{2}+y^{2}+x^{2} y^{2}+16 x^{2}=448$
$2 x^{2} y^{2}+y^{2}+16 x^{2}=448$
$2 x^{2} y^{2}+y^{2}=448-16 x^{2}$
$y^{2}\left(2 x^{2}+1\right)=16\left(28-x^{2}\right)$
If $y^{2}=16$ then $2 x^{2}+1=28-x^{2}$
$y^{2}=4 \times 4 \quad$ then $2 x^{2}+x^{2}=28-1$
$y^{2}=\sqrt{4^{2}} \quad$ then $3 x^{2}=27$
$y=\sqrt{4^{2}} \quad$ then $x^{2}=9$
$y= \pm 4 \quad$ then $x= \pm 3$
If $y^{2}=28-x^{2} \quad$ then $2 x^{2}+1=16$
$y^{2}+x^{2}=28$ then $2 x^{2}=16-1$
$y^{2}+x^{2}=28$ then $2 x^{2}=15$
$x^{2}+y^{2}=28$ then $x^{2}=15 / 2$
$x^{2}+y^{2}=28$ then $x= \pm \sqrt{15 / 2}$
Since in this case, values of x are not integers, this, it is rejected
$\therefore \mathrm{x}= \pm 3 \quad \mathrm{y}= \pm 4$
\therefore possible pair $=(3,4) ;(3,-4) ;(-3,4) ;(-3,-4)$.
5. Prove that for each positive integer m, the number 9.2^{m} can be written as a sum of three squares of positive integers.

Sol:

9.2^{m}
For $\mathrm{m}=1$
$9.2=18 \quad \rightarrow \quad 4^{2}+1^{2}+1^{2}$.
By induction, we can assume for $\mathrm{m}=\mathrm{k}$
$9.2^{k}=x^{2}+y^{2}+z^{2}$.
Now, we have to prove for
$\mathrm{m}=\mathrm{k}+1$
2.9.2 ${ }^{\mathrm{k}}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$

For $m=2$
$9.2^{2}=36 \quad \rightarrow \quad 4^{2}+4^{2}+2^{2}$
By induction we can assume for $\mathrm{m}=\mathrm{k}+1$
9.2 $2^{k+1}=x^{2}+y^{2}+z^{2}$
2.9.2 ${ }^{\mathrm{k}}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$

Hence Proved.
6. Determine how many distinct integers are there in the set

$$
\left\{\left[\frac{1^{2}}{1998}\right],\left[\frac{2^{2}}{1998}\right],\left[\frac{3^{2}}{1998}\right], \ldots \ldots \ldots,\left[\frac{1998^{2}}{1998}\right]\right\}
$$

Here $[\mathrm{x}]$ denotes the greatest integer less than or equal to x .
Sol:
$\left\{\left[\frac{1^{2}}{1998}\right],\left[\frac{2^{2}}{1998}\right],\left[\frac{3^{2}}{1998}\right] \cdots\left[\frac{1997^{2}}{1998}\right],\left[\frac{1998^{2}}{1998}\right]\right\}$

Upto $\left[\frac{1^{2}}{1998}\right]=\left[\frac{2^{2}}{1998}\right]=\ldots \ldots \ldots . . .=\left[\frac{44^{2}}{1998}\right]=0$
Upto $\left[\frac{45^{2}}{1998}\right]=\left[\frac{46^{2}}{1998}\right]=\ldots \ldots=\left[\frac{63^{2}}{1998}\right]=1$
$\therefore\left[\frac{64^{2}}{1998}\right]=2$ and so on upto $\left[\frac{\mathrm{x}^{2}}{1998}\right]$ where $\mathrm{x}=999$ and distinct integers are $\{0,1,2,3$,
\qquad 499, \} which are 500 in numbers

Now $\frac{(1000)^{2}}{1998}=\frac{1000000}{1998}$
$\frac{999^{2}}{1998}=\frac{998001}{1998}$ and
There difference is $(1000)^{2}-(999)^{2}>1998$
so $\frac{(1000)^{2}-(999)^{2}}{1998}>1$
and onwards.
$\therefore \mathrm{x}=1000$ and onwards every term will have a unique GINT, which can be 1998-999=999
numbers of unique integers. And the previous integers are 500 in number
\therefore The total integers are $999+500=1499$.
7. How many 6 digit numbers abcdef are there consisting of the digits $0,1,2,3,4,5$ each exactly once and satisfying the condition $a+f=b+e=c+d$?

Sol:

$$
0+5=1+4=2+3=5
$$

The supplement of $0=5$ and vice versa
The supplement of $1=4$ and vice versa
The supplement of $2=3$ and vice versa
The lakh's place can have any digit except $0 . \therefore 5$ possibilities.
Let's fix any one of the numbers at this place.
Thus, the one's digit can have only one digit i.e. its supplement
Now we are left with 6-2 $=4$ digits.

The 10,000 's place can have any of the 4 digits. Lets fix any 1 number of the remaining at this place.
Thus, the 10 's digit will have only one digit i.e. its supplement.
Now we are left with only 4-2 = 2 digits
the 1000 's place can have any one of these two. Lets fix one of these there. Now we are left with only one digit.
\therefore By rule of multiplication, we get,
Total numbers possible $=5 \times 4 \times 2=40$ numbers.
8. How many ordered triples (a, b, c) of integers are there such that
(i) $1 \leq$ a $\leq 10,1 \leq$ b $\leq 10,1 \leq$ c ≤ 10 and
(ii) $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$?

Sol:
$1 \leq \mathrm{a}, \mathrm{b}, \mathrm{c} \leq 10$
$\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$
when $\mathrm{a}=1$
$\mathrm{a}=1, \mathrm{c}=10$
$1 \leq \mathrm{b} \leq 10 \quad 10$ cases
$\mathrm{a}=1, \mathrm{c}=9$
$1 \leq b \leq 9$
9 cases
$\mathrm{a}=1, \mathrm{c}=8$
$1 \leq \mathrm{b} \leq 8$
(8) cases
$\mathrm{a}=1, \mathrm{c}=7$
$1 \leq \mathrm{b} \leq 7$
7 cases
$\mathrm{a}=1, \mathrm{c}=6$
$1 \leq \mathrm{b} \leq 6$
6 cases
$\mathrm{a}=1, \mathrm{c}=5$
$1 \leq \mathrm{b} \leq 5$
5 cases
$\mathrm{a}=1, \mathrm{c}=4$
$1 \leq b \leq 4$
4 cases
$\mathrm{a}=1, \mathrm{c}=3$
$1 \leq \mathrm{b} \leq 3$
3 cases
$\mathrm{a}=1, \mathrm{c}=2$
$1 \leq \mathrm{b} \leq 2$
2 cases
$\mathrm{a}=1, \mathrm{c}=1$
$1 \leq \mathrm{b} \leq 1$
1 cases
Total cases $=10+9+8+7+6+5+4+3+2+1=55$ cases.

Similarly
For $\mathrm{a}=2$
For $\mathrm{a}=3$
For $\mathrm{a}=4$

Total cases

For $\mathrm{a}=5$453628

For $\mathrm{a}=6$	15
For $\mathrm{a}=7$	10
For $\mathrm{a}=8$	06
For $\mathrm{a}=9$	03
For $\mathrm{a}=10$	01
For $\mathrm{a}=1$	$\underline{\mathbf{5 5}}$
	$\underline{\mathbf{2 2 0}}$

$\therefore \quad$ The total possible triplets are 220 .

