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ii PROBLEMS

Abstract

Nowadays, in the time when the level of teaching universally decreases and “pure” science does not
appeal as it used to, this book can attract new students to mathematics.

The book can be useful to all teachers and instructors heading optional courses and mathematical groups.
It might interest university students or even scientists.
But it was primarily intended for high school students who like mathematics (even for those who,

perhaps, are unaware of it yet) and to their teachers. The complete answers to all problems will facilitate
the latter to coach the former.

The book also contains some history of Moscow Mathematical Olympiads and reflections on mathemat-
ical olympiads and mathematical education in the Soviet Union (the experience that might be of help to
western teachers and students). A relation of some of the problems to “serious” mathematics is mentioned.

The book contains more than all the problems with complete solutions of Moscow Mathematical Olympiads
starting from their beginning: some problems are solved under more general assumptions than planned dur-
ing the Olympiad; there extensions are sometimes indicated. Besides, there are added about a hundred
selected problems of mathematical circles (also with solutions) used for coaching before Olympiads.

The Moscow Mathematical Olympiad was less known outside Russia than the “All-Union” (i.e., National,
the USSR), or the International Olympiad but the problems it offers are on the whole rather more difficult
and, therefore, it was more prestigious to win at. In Russia, where sports and mathematics are taken
seriously, more than 1,000,000 copies of an abridged version of a part of this book has been sold in one year.

This is the first book which contains complete solutions to all these problems (unless a hint is ample, in
which case it is dutifully given).

The abriged Russian version of the book was complied by Gregory Galperin, one of the authors of a
great part of the problems offered at Moscow Mathematical Olympiads (an expert in setting olympiad-type
problems) and Alexei Tolpygo, a former winner of the Moscow, National and International Olympiads
(an expert in solving mathematical problems). For this complete English edition Pavel Grozman and
Alexander Shapovalov (a first and a third prize winners at the 1973 and 1972 International Mathematical
Olympiads, respectively) wrote about 200 new solutions each.

The book is illustrated by Anatoly Fomenko, Corresponding Member of the Russian Academy of
Sciences, Professor of Mathematics of Moscow University. Fomenko is very well known for his drawings and
paintings illustrating the wonders of math.

Figures are sketched under supervision of Victor Prasolov, Reader at the Independent University
of Moscow. He is well-known as the author of several amazingly popular books on planimetry and solid
geometry for high-school students.

From I.M. Yaglom’s “Problems, Problems, Problems. History and Contemporaneity”
(a review of MOSCOW MATHEMATICAL OLYMPIADS

compiled by G. Galperin and A. Tolpygo)

The oldest of the USSR Math Olympiads is the Leningrad High-school Olympiad launched in 1934 (the
Moscow Math Olympiad runs since 1935). Still, for all these years the “most main” olympiad in the country
was traditionally and actually the Moscow Math Olympiad. Visits of students from other towns started
the expansion of the range of the Moscow Math Olympiad to the whole country, and, later, to the whole
Earth: as International Olympiads.

More than half-a-century-long history of MMO is a good deal of the history of the Soviet high school,
history of mathematical education and interactive work with students interested in mathematics. It is
amazing to trace how the level of difficulty of the problems and even their nature changed with time: problems
of the first Olympiads are of the “standard-schoolish” nature (cf. Problems 1.2.B.2, 2.2.1, 3.1.1 and 4.2.3)
whereas even the plot of the problems of later olympiads is often a thriller with cops and robbers, wandering
knights and dragons, apes and lions, alchemists and giants, lots of kids engaged in strange activities, with
just few quadratics or standard problems with triangles.

Problems from the book compiled by Galperin and Tolpygo constitute a rare collection of the long work
of a huge number of mathematicians of several generations; the creative potential of the (mainly anonymous)
authors manifests itself in a live connection of many of the olympiads’ problems with current ideas of modern
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Mathematics. The abundance of problems associated with games people play, various schemes described by
a finite set, or an array of numbers, or a plot, with only qualitative features being of importance, mirrors
certain general trends of the modern mathematics.

Several problems in this book have paradoxical answers which contradict the “natural” expectations, cf.
Problems 13.1.9-10.2, 24.1.8.2, 32.7.3, 38.1.10.5, 44.7.3, and Problems 32.9.4 and 38.2.9.19 (make notice also
of auxiliary queries in Hints!).
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Preface

I never liked Olympiads.
The reason is I am a bad sportsman: I hate to lose. Sorry to say, I realize that at any test there usually

is someone who can pass the test better, be it a soccer match, an exam, or a competition for a promotion.
Whatever the case, skill or actual knowledge of the subject in question often seem to be amazingly less
important than self-assurance.

Another reason is that many of the winners in mathematical Olympiads that I know have, unfortunately,
not been very successful as mathematicians when they grew up unless they continued to study like hell (which
means that those who became good mathematicians were, perhaps, not very successful as human beings;
however, those who did not work like hell were even less successful). Well, life is tough, but nevertheless it
is sometimes very interesting to live and solve problems.

To business.
Regrettable as it is, an average student of an ordinary school and often, even the1 teacher, has no idea

that not all theorems have yet been discovered.
For better or worse, the shortest way for a kid to discover mathematics as science, not just a cook book

for solving problems, is usually through an Olympiad: it is a spectacular event full of suspense, and a good
place to advertise something really worth supporting like a math group or a specialized mathematical school.
(Olympiads, like any sport, need sponsors. Science needs them much more but draws less.)

On the other hand, there are people who, though slow-witted at Olympiads, are good at solving problems
that may take years to solve, and at inventing new theorems or even new theories.

One should also be aware of the fact that today’s mathematical teaching all over the world is on the
average at a very low level; the textbooks that students have to read and the problems they have to solve
are very boring and remote from reality,whatever that might mean. As a Nobel prize winner and remarkable
physicist Richard Feynman put it2, most (school) textbooks are universally lousy.

This is why I tried to do my best to translate, edit and advertise this book — an exception from the
pattern (for a list of a few very good books on elementary mathematics see Bibliography and paragraph H.5
of Historical remarks; regrettably, some of the most interesting books are in Russian).

If you like the illustrations in this book you might be interested in the whole collection of Acad.3

A. Fomenko’s drawings (A. Fomenko, Mathematical impressions, AMS, Providence, 1991) and the mathe-
matics (together with works of Dali, Breughel and Esher) that inspired Fomenko to draw them.

* * *
This is the first complete compilation of the problems from Moscow Mathematical Olympiads with

solutions of ALL problems. It is based on previous Russian selections: [SCY], [Le] and [GT]. The first
two of these books contain selected problems of Olympiads 1–15 and 1–27, respectively, with painstakingly
elaborated solutions. The book [GT] strives to collect formulations of all (cf. Historical remarks) problems
of Olympiads 1–49 and solutions or hints to most of them.

For whom is this book? The success of its Russian counterpart [Le], [GT] with their 1,000,000 copies
sold should not decieve us: a good deal of the success is due to the fact that the prices of books, especially
text-books, were increadibly low (< 0.005 of the lowest salary.) Our audience will probably be more limited.

1We usually use a neutral “(s)he” to designate indiscriminately any homo, sapiens or otherwise, a Siamease twin of either
sex, a bearer of any collection of X and Y chromosomes, etc. In one of the problems we used a “(s)he” speaking of a wise
cockroach. Hereafter editor’s footnotes.

2Feynman R. Surely you’re joking, Mr. Feynman. Unwin Paperbacks, 1989.
3There were several scientific degrees one could get in the USSR: that of Candidate of Science is roughly equivalent to a

Ph.D., that of Doctor of Science is about 10 times as scarce. Scarcer still were members of the USSR Academy of Sciences.
Among mathematicians there were about 100 Corresponding Members — in what follows abbreviated to CMA — and about
20 Academicians; before the inflation of the 90’s they were like gods. (This is why the soviet authors carefully indicate the
scientists’ ranks.)

1
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However, we address it to ALL English-reading teachers of mathematics who could suggest the book to their
students and libraries: we gave understandable solutions to ALL problems.

Do not ignore fine print, please. Though not as vital, perhaps, as contract clauses, Remarks and Extensions, i.e.,
generalizations of the problems, might be of no less interest than the main text.

Difficult problems are marked with an asterisk ∗.
Whatever the advertisements inviting people to participate in a Moscow Mathematical Olympiad say,

some extra knowledge is essential and taken for granted. The compilers of [Le] and [SCY], not so pressed to
save space, earmarked about half the volume to preparatory problems. We also provide sufficient Prerequi-
sites. Most of the problems, nevertheless, do not require any special background.

The organizers of Olympiads had no time to polish formulations of problems. Sometimes the solutions
they had in mind were wrong or trivial and the realization of the fact dawned at the last minute. It was
the task of the “managers” (responsible for a certain grade) and the Vice Chairperson of the Organizing
committee to be on the spot and clarify (sometimes considerably). Being unable to rescue the reader on the
spot, I have had to alter some formulations, thus violating the Historical Truth in favour of clarity.

While editing, I tried to preserve the air of Moscow mathematical schools and circles of the period and,
therefore, decided to season with historical reminiscences and clarifying footnotes. We also borrowed Acad.
Kolmogorov’s foreword to [GT] with its specific pompous style. One might think that political allusions
are out of place here. However, the stagnation and oppression in politics and social life in the USSR was a
reason that pushed many bright (at least in math) minds to mathematics.

The story A little problem1 and Historical remarks describe those times. Nowadays the majority of them
live or work in America or Europe. I hope that it is possible to borrow some experience and understand
the driving forces that attracted children to study math (or, more generally, to mathematical schools, from
where many future physicists, biologists, etc., or just millionaires, also emerged). It was partly the way they
studied and later taught, that enabled them to collect a good number of professorial positions in leading
Universities all over the world (or buy with cash a flat on Oxford street, London).

What is wrong with the educational system in the USA or Europe, that American or European students
cannot (with few exceptions) successively compete with their piers from the USSR? This question is so
interesting and important that The Notices of American Mathematical Society devoted the whole issue (v.
40, n.2, 1993) to this topic, see also the collection of reminiscences in: S. Zdravkovska, P. Duren (eds.), The
golden years of Moscow mathematics, AMS, Providence, 1993.

There were several features that distinguished mathematical circles and mathematical olympiads. The
better ones were almost free of official bureaucratic supervision: all circles, olympiads, even regular lectures
at mathematical schools (a lot of hours!) were organized by volunteers who often worked “the second shift”
gratis for weeks or years (sic!); their only reward being moral satisfaction. There was freedom of dress code,
possibility for children to address the leader of a circle, a Professor, by the first name (unheard of at regular
schools), and the possibility for students who ran the circles and olympiads to ridicule the governing Rules
in problems, without endangering the whole enterprise, by sticking the head out too far.

One of the problems (32.2.9.4 on “democratic elections”) was even published recently in a political
magazin Vek XX i mir (20-th Century and the World, no. 10, 1991) with a discussion of its timelyness and
realistic nature.

We should realize, however, that graduates of mathematical schools, though freer in thinking, were often
handicapped by overestimation of professional (especially mathematical) skills of a person as opposed to
humane qualities.

* * *
This compilation seemingly exhausts the topic: problems of the 70’s are often more difficult than inter-

esting; owing to the general lack of resources Moscow Mathematical Olympiads became less popular. About
15 years ago similar lack of enthusiasm gripped famous Moscow mathematical schools. A way to revitalize
mathematical education was suggested by one of the principal organizers of Moscow mathematical schools,
Nikolaj Nikolaevich (Kolya) Konstantinov. It was similar to the most effective modern scientific way of
getting rid of stafillacocus in maternity wards in our learned times: burn down the whole damned house.
Konstantinov organized several totally new mathematical schools and a so-called Tournament of Towns (as
a rival to counterbalance the Olympiads). The tournament became an international event several years ago;
for the first collection see [T].

* * *

1This story was published during an abortive thaw in 60’s; its author was unable to publish since.
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I thank those who helped me: I. Bernstein, L. Makar-Limanova and Ch. Devchand; V. Pyasetsky, V. Prasolov and
I. Shchepochkina. Pavel Grozman and Alexander Shapovalov had actually (re)written about 150 solutions each, Grozman
made about a 1000 clarifying comments.

I also thank N. N. Konstantinov who introduced me to mathematics.

Dimitry Leites

Stockholm University, Department of Mathematics, Roslagsv. 101, 106 91 Stockholm, Sweden
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Forewords

Mainly for the teacher. The problems collected in this book were originally designed for a compe-
tition, that is, to be solved in five hours time during an Olympiad. Many mathematicians in Russia were
quite unhappy about this. They argued against this mixture of sport and science: many winners later did
not achieve nearly so much in their studies as in this really very specific kind of “mathematical sport”. Vice
versa, many people who could never succeed under stress proved later to be among the most talented and
productive. It is true also that real mathematics deals mostly with problems taking months and years, not
hours, to make a step forward.

Still, for many schoolchildren, the idea of a competition is very attractive, and they can take part just
for its sake and so discover how diverse and interesting Mathematics (not just math) can be. Afterwards one
can find a lot of more productive mathematical activities than competitions: reading mathematical books
is just one. But there should be the very first step, and Olympiads, as well as Olympiad style problems in
school mathematical clubs and such, help to make it.

One can use this book as the source of problems to organize an Olympiad-like competition on one’s
own, or for the group or individual studies. In Moscow the same group of the University1 professors and
postgraduate students that launched the Olympiads (see Historical Remarks) also established a tradition of
“mathematical circles” — weekly gatherings of schoolchildren at the University, where they can attend a
lecture, solve some problems, report their progress and get advice. Many of the problems first proposed at
the Olympiad later became the “circles’ folklore” and taught several generations.

To use these problems in this way is probably much better, because it is up to a student to choose: either
to compete with others for the number of problems solved, or just to besiege a single difficult one. Thus,
different psychological types can be properly treated without hurting anybody. (A failure at the Olympiad
can be a cause for a grave psychological disturbance in the whole future life.)

Some problems are tremendously difficult2; only few individuals could solve such problems. As you may
learn from Historical Remarks, there were several problems with not a single correct solution presented to
the Organizing Committee (while the Committee only knew a wrong solution). Therefore, never mind if you
try to crack some of these hard nuts and fail: so did many others. Try it again later or look up Solutions:
perhaps you just misunderstood the formulation. Just do not try a new problem on your pupils before
examining it yourself properly: it may save a teacher a lot of trouble.

You may encounter some difficulties trying to explain solutions to your pupils due to the curriculum
differences in the U.S. and S.U. You can find feeble consolation in the fact that your colleagues in Russia
experience the same difficulties: three more or less radical reforms have passed since the first Olympiad, and
the fourth catastrophe is in progress. However, the authors tried to use wherever possible only “elementary”
mathematics in solutions, though throwing in a little Calculus could have made it much easier.

We hope that the spirit of the Moscow Mathematical Olympiads will remain the same and that for many
years to come there will be ringing voices of teenagers in the rooms of Moscow University and questions will
be asked again: “When will the next Olympiad be held?”3

1M. V. Lomonosov Moscow University is, or rather was before the mass emigration of the ’80s, for the USSR more than
what Princeton and Harvard combined are for the USA, at least as regards mathematics. Mathematics was also well taught
in some of Moscow Institutes but the study there was handicapped by the red tape and the general lack of the “air”. At
the moment the major part of Institutes in Moscow and larger cities are renamed into “universities”, but still The University
remains outstanding.

2Sometimes so much so that even after 9 years of editing and re-editing, nobody knew the answers; to a couple of problems
we only knew a wrong answer. All this, together with the correct answers became clear when Pavel Grozman, a First prize
winner at the 1973 International Mathematical Olympiad lent a hand. Several mistakes (with corrections) were discovered by
A. Shapovalov, V. Prasolov and V. Pyasetsky.

3Or, rather, more usual “Will we be allowed to eat during the Olympiad?”
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Mainly for students. This book may be useful for you in your studies and it may be an entertainment.
It may sound curious for those who know only usual text-books but a lot of students of your age get a

lot of fun just solving mathematical problems. To feel this joy for the first time, one usually has to taste
something very different from the common kind of school algebra and geometry.

The authors of the problems collected here tried their best not to be boring or scholastic; they prefered
rather to be mocking and ridiculing.

There is a lot of good sense in these problems, too. School mathematics is usually formulated in a very
specific “scientific” (pseudo-scientific far too often) way. You can recognize a school manual phrase in a
hundred. But, in real life, nobody will prepare your problems for you in such a manner1: you will have to
distill from an actual, vaguely put, problem a precise mathematical one yourself. So the stranger-looking
problems teach you to recognize mathematics in the world around you.

Finally, while solving these problems you can get acquainted with many ideas and notions, quite common
for mathematics of this century but still not popular enough with school curricula. Without bothering about
strict terms, you will learn how to deal with many principles of the so-called “discrete” mathematics, which
proved to be a universal language for all natural sciences.

The syllabus of mathematical studies at Soviet secondary schools has undergone in the course of history
several radical changes. For instance, the translator of this book was taught complex numbers and trigonom-
etry but not integrals whereas the next and previous generations enjoyed the opposite choice. Some of these
changes were akin to smashing blows2.

We have tried to solve the problems using elementary school mathematics; some of the solutions would,
however, be too long if presented in elementary terms so we used some calculus. Ask your teacher in case
of confusion and do not blame him/her if (s)he fails to solve some of the problems. In the awful case that a
fault or misprint crept into the text please send a tip to the editor or compilers.

One of the points we’d like to make is that ability to solve Olympiad problems does not distinguish a
good teacher nor a good mathematician; speaking mathematically this is neither a necessary nor sufficient
condition. A good adult mathematician, however, can usually solve any Olympiad problem3, at least by
more advanced means.

You must know that some of the problems collected here are very complicated. Some even proved to be
so difficult that in 5 hours of the Olympiad none of the students in the ten-million-city of Moscow succeeded
in finding the correct solution. Such a problem can astound even Ph. D. holders4. So you should not consider
yourself (or your schoolmate, or your professor) inadequate if you (or they) do not make progress even after
a week-long struggle.

But you should not be scared off! Our advice: set a difficult problem aside for a while rather than rush
immediately to Solutions after an unsuccessful first attack.

Now you can begin without further delay. Be sure to skim through Prerequisites first!
More advice: always put down your solutions to stew for a while. Discuss them, if possible, with your

teacher and classmates. Afterwards, if you have found no faults in your proof, read the one proposed in this
book. It may well differ from the one you invented yourself (and if it is similar to yours ... well, the greater
chance for both to be correct).

Remember that an answer, such as “Yes”, “Never” or “Five hundred and five”, is not a solution, even if
correct. Proofs5 of all your statements are expected, and the word clearly should not litter it: try to explain
everything. Be aware of the fact that when we wrote “clearly, ...”, “it is easy to see”, “it is not difficult to
verify”, etc., we meant that it is the inquisitive reader who will actually complete the proof. (Otherwise the
book would have been twice its size and price.)

Use Part 2 (Solutions) to see if something you thought to be obvious can indeed be deduced from some
much more evident facts.

* * *

1This is a typical stand of an ‘olympiadchik’, but it is not altogether wrong.
2This might give to an optimistic student an idea that either of the above choices should be harmlessly sacrificed in favor

of some other, seemingly healthier than math, activity.
3If has nothing better to do; a mathematician usually solves Olympiad-type problems around the clock, anyway; this is

one’s job and hobby.
4Some of the problems have been correctly solved for the first time here.
5An average student does NOT know what exactly this word means; neither do some (too many) school teachers. May

this book help you to understand this.
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Unlike exercise from Problem books, a real problem requires to be investigated: one has to find out at
least a way to tackle it. Therefere, start with easier problems. Do not solve all the problems in a row; this
is not a homework, choose the problems more interesting to you.

If you can not solve the problem, try to make a similar but easier problem and solve it. If you can not
even that, read a hint. If it does not help either, try not to gulp the solution but read it slowly, as a detective
story in which you try to guess the next turn of mind. Finally, look at the solution “in the large”: what are
its main driving ideas, and, most important, how could one get to it.

If you managed to solve the problem, read its solution we offer, since it is instructive to compare different
solutions (even if one of them is wrong).

To understand a solution deeper, ask yourself: at what stages of the proof we used different given data?
Will the statement be true if we slacken or omit a condition? Is the converse statement true?

Important is not the quantity of problems solved but the deepness of understanding their solution, the
new information acquired.

AT AN OLYMPYAD
1. Read all the problems offered and order them as you will solve them. Bare in mind that the order

given is usually in accordance with their difficulty from the compilers’ point of view.
2. If the problem has a too easy solution, then, most probably, you misunderstood the formulation or

made a mistake.
3. If you can not solve the problem, try to simplify it: make smaller numbers, consider particular cases,

etc., or solve it “backwards”, by the rule of contraries, substitute indeterminates instead of given numbewrs
or the other way round, etc.

4. If undecided whether a statement is true, try alternatevely to prove and to disprove it.
5. Do not stick to one problem for too long: from time to time make a break and estimate your position.

If you managed to advance, continue, otherwise, leave the problem for a while.
6. If tired, relax immediately (look at the sky and contemplate the infinite or walk along the corridor).
7. Having solved the problem, immediately write it down in proper official style, not as a letter to a pal.

This will help to verify the arguments and will free the old bean for other problems.
8. Each turn of idea should be documented even if it looks obvious. It is convenient, therefore, to express

the solution as a series of statements (lemmas).
9. The student seldom rereads his/her own production trying to put oneself into the jurys’ shoos: will

anybody be able to understand anything you wrote?”
Good luck and best ideas!

Acknowledgments. We deem it our pleasant duty to point out about 40 years of Sisyphus’ work on mathematical
education performed by N. N. Konstantinov.

Konstantinov was (and still is) one of the principal organizers of the specialized Moscow’s mathematical schools, instru-
mental in arranging Moscow Olympiads and other mathematical contests (Tournament of Towns, etc.). He always was their
soul.

Acad. A. N. Kolmogorov, who always actively participated in organizing Moscow Mathematical Olympiads from their
start till his death, did much for the book [GT] as its editor and scientific consultant. We use this opportunity to express our
warmest gratitude to him.

We are also obliged to all those who helped us in working on the book and preparing it for publication, and above all to
V. V. Prasolov, V. M. Tikhomirov, N. B. Vasiliev, and A. M. Abramov, as well as A. P. Savin, S. M. Saakyan, A. L. Toom,
E. A. Morozova, R. S. Cherkasov, and A. B. Khodulev.

We are grateful to V. G. Boltiansky and I. M. Yaglom, and to A. A. Leman for their kind permission to use parts of their
article about the book [YB] and borrow from [Le], respectively.

G. Galperin and A. Tolpygo
Moscow–Bielefeld; Moscow–Kiev 1985–93
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Academician A. N. Kolmogorov’s foreword to [GT]

Our country needs many research mathematicians who are able to make discoveries in mathematics itself and to apply it in
unusual ways that require great ingenuity. Usually, scientists who started to practice research-type activity while still at school
were more successful later on. Many of them made serious discoveries when 17–19 years old. To postpone the involvement of
young people in intense research is to irrevocably lose many of potentially very creative researchers.

Addressing school students who are seriously thinking of becoming real mathematicians, I will tell them the following.
Just as in sports, practice requires plenty of a young mathematician’s time. It will be profitable if you peruse this collection of
problems on your own, choose a problem whose formulation seems interesting to you and start thinking it over without reading
the solution.

Do not be afraid that you may waste many, many hours doing that. In this respect I recall the words of Boris Nikolaevich
Deloné, one of the most remarkable Russian mathematician, who said that a great scientific discovery in mathematics differs
from a tough Olympiad problem only in that the problem takes 5 hours to solve while an important research consumes 5 000
hours. Deloné liked to exaggerate; do not take these “5 000 hours” too literally. But it is typical of a mathematician who attacks
a difficult problem to be able to ponder over it for days. If a problem proves a hard nut to crack it is reasonable to try another
one. But it is also good to turn back to the first one after a while. It is sometimes useful even for mature mathematicians
to put off a difficult problem for some time. It often happens that a solution suddenly emerges from the subconscious after a
period of time.

It is only natural that one is delighted and even proud of his/her success at an Olympiad. But failure should not upset
you too much or make you disappointed in your abilities in mathematics. The success at an Olympiad requires certain special
talents which are not at all necessary for a successful research. The very fact of strict limitation of time allotted for solving
problems during an Olympiad makes many people quite helpless. There are, however, mathematical problems whose solution
can only be obtained as a result of a very long and calm contemplation and after moulding new concepts. Many problems of
this kind were solved by Pavel Sergeevich Alexandrov who used to say that if there were mathematical olympiads in his time
he may have never become a mathematician since his main accomplishments in mathematics resulted from a long and deep
contemplation rather than a fast-working smartness.

I hope that our collection of problems will be of great help for all instructors of math clubs and for the organizers of local
olympiads. I wish to make two comments for them.

The Moscow Mathematical Olympiads were originally addressed to 9–10 graders. Since 1940, however, 7-th and 8-th
graders were also invited. I think this choice of age group is quite justified. It is at this age that the knack for mathematics
becomes manifest. Certainly, one can organize olympiads for younger kids but one has to bear in mind that most of the boys
and girls who distinguished themselves in problem-solving contests in 5–6 grades lose their special capabilities and even interest
in mathematics as they grow up1.

When organizing an olympiad for a particular group of students, it is very important to correctly estimate in advance the
complexity of the problems to be offered. These should be planned so that the most capable participants could solve most of
the problems but there should not be too many participants who failed to solve at least one problem. Some information about
the problems which, unexpectedly, proved to be too difficult in practice can be found in reports on Olympiads published in
the magazines Matematika v shkole and Kvant2. Regrettably, the level of difficulty was not always correct at some of Moscow
Mathematical Olympiads. The content of the problem usually was, nevertheless, up to very high standards.

In Historical remarks the authors describe in detail the great experience of Moscow Mathematical Olympiads and how
the process of devising olympiad-type problems went hand-in-hand with the work of mathematical clubs under the Moscow
University’s egid. The joint efforts of the leaders of the University’s math circles in a great and outstanding job. It resulted in
a book you are going to read now.

The job of the compilers, G. A. Galperin and A. C. Tolpygo, is wonderful and deserves deep gratitude.

1This argument seems doubtful; more serious troubles are (a) the strain and stress of an Olympiad which is the real danger
for students at the early age and (b) the difficulty for the organizers to devise reasonably tough and more or less meaningful
problems at the level needed.

2It is a very good mathematical magazin and during its first 20 years it was a REMARKABLY GOOD magazin. Now a
very close version to the Russian original is published in English as Quantum.
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Part 1: Problems





Introduction

Prerequisites and notational conventions

The following prerequisites were largely assumed to be known to any participant of an Olympiad.1 Lately it became clear
that the gap between the standard school mathematics and that of an Olympiad should be bridged in order not to discriminate
against an average student. For example, the collection2 of preparatory problems for the jubilee 57-th Olympiad contained
several very useful comments partly coinciding with ours. We borrowed some of them.

We expect that the reader of knows how to plot the graph of the function y = ax2 + bx + c given the coefficients a, b, c.
Various (good) books on elementary mathematics written in English use different notations, e.g., quadrangle — quadri-

lateral; cathetus — leg, etc. To augment the confusion the original problems for various Olympiads were compiled by different
authors, each with the own style.

We edited the text in order to reduce such discrepancies but to please all was impossible. For example, the requirements
of present AMS mathematics editors to style are sometimes at variance with Webster’s dictionaries and differ from guidelines
formerly advocated by AMS via Halmos’s pamphlet“How to write mathematics”, originally published in L’Enseignements
Mathématiques t.XVI, fasc. 2, 123–152 and reprinted many times since then in many languages.

Problems are enumerated as follows: the first number is the number of the Olympiad, the second one
is the number of the tour (if there was only one tour this number is skipped), the third number is that of
the grade, and the fourth number is the number of the problem itself. There are natural modifications of
these notations, e.g. 1.2.C.1 denotes Olympiad 1, tour 2, set C, Problem 1; 4.2.2 denotes Olympiad 4,
tour 2, Problem 2; 10.2.7-8.3 denotes Olympiad 10, tour 2, grades 7-8, Problem 3; in 33.D.7.4 D is for
Pythagoras’ Day.

An asterisk marks a more difficult (heading of a) problem, e.g., 1.2.C.1 b)*.

The principles. Dirichlet’s principle. If n rabbits sit in k hutches, then there is a hutch with not
less than n

k rabbits and a hutch with not more than n
k rabbits.

Though this principle is obvious, it sometimes solves difficult problems: it is not always easy to select
objects that play the role of rabbits and hutches.

The Dirichlet’s principle applies to continuous quantities as well: If n rabbits have eaten k kg of food,
then there is a rabbit who has eaten not less than n

k kg and a rabbit who has eaten not more than n
k kg.

The principle of mathematical induction is used to prove an infinite sequence of statements:
Consider a statement S(n) that depends on a positive integer n ≥ n0. We believe S(n) to be true for

any positive integer n ≥ n0 if
1) S(n0) holds for some n0;
2) the validity of S(l) for n0 ≤ l ≤ k implies S(k + 1).
Heading 1) is called the base of induction; heading 2) is called the inductive step and the assumption we

use in 2) the inductive hypothesis3.
Example: Find the sum 1 + 3 + ...+ (2n− 1).
Solution. Let us denote this sum by S(n) and look at it for small n. We see that S(1) = 1, S(2) = 4,

and S(3) = 9. An educated guess is: S(n) = n2.
The base of induction is fulfilled for n0 = 1.
Now the inductive step: S(k+ 1) = S(k) + 2(k+ 1)− 1 = (by the inductive hypothesis) = k2 + 2k+ 1 =

(k + 1)2. Q.E.D.
Sometimes the induction is used backwards, cf. Problem 20.2.10.5. Namely, Consider a statement S(n)

that depends on a positive integer n ≥ n0. We believe S(n) to be true for any positive integer n ≥ n0 if

1Although every cultured person must know these facts, among other useless data, some people do not; therefore, we
recommend to skim through this section before advancing further.

2Kanel-Belov A., Kovaldzhi A., Vasilev N. Preparatory Problems to LVII Moscow Mathematical Olympiad, Treade,
Moscow, 1994.

3Some mathematicians with quite unorthodox minds doubt the universality of this principle. They only believe in the
numbers we can actually count. Since the mathematics obtained this way is supposed to be very poor, these ideas are not
popular. They did not die out, however, because the attempts to consider only constructible statements clarified some messy
or nonconstructive proofs of interesting theorems.

11
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1) S(n0) holds for some n0;
2) the validity of S(l) for k ≥ l implies S(k − 1).
Warning. It could happen that the inductive step is easy to perform but the conclusion is nevertheless

wrong. This happens if the justification of the base of the induction is ignored and we are trying to prove a
wrong statement.

Example: Let us “prove” that The eyes of all people are of the same color. Indeed, the eyes of one
person are of the same color1. Now, assume that the statement is true for k people; then it is obviously true
for k + 1 people since any k of these k + 1 persons have the eyes of the same color. The catch is that for
k = 2 the statement is generally false.

Games: selected ideas. 1) Solution backwards, cf. Problems ...
2) Correspondence. The presence of a lucky move can be justified by a symmetry, partition into pairs

or a complement, cf. Problems ...
3) Transfer of the move. If we can use the opponent’s strategy we are not worse off than the opponent.

For example we win or draw if we can assume the opponent’s winning position at will, cf. Problems...
4) “Prepared homework” (on an infinite field), cf. Problems

Selected ideas. Reductio ad absurdum. If we assume that the statement to prove is false and deduce
a contradiction from this assumption, this will prove that the statement was true after all.

Estimates. We estimate a complicated quantity with a simpler one. The inequality between the mean
arithmetic and the mean geometric is often used.

An invariant. A quantity is sometimes always even (odd) or just a constant. This implies that a situation
in which this quantity is odd (even) or not a constant are impossible, cf. Problems ... Sometimes a quantity
can be calculated (or estimated) in two ways and we compare the results, cf. Problems A residue can serve
as an invariant and we only have to check the possibilities case-by-case, cf. Problems ...

Cycles or periods that arise in a process are examples of invariants, cf. Problems ...
The rule of an extreme element. Singular or extreme objects (the largest nummer, the nearest point, the

vertex of a polygon, the degenerate circle, the limit case, etc.) often clarify the regular case. Cf. Problems
...

Standard common notations. In all problems on tournaments it is assumed that each participant
competes with every other only once. In a chess tournament, a player gets 1 point for victory, half a point
if the game ends in a draw, and 0 for loss; in soccer, all scores are twice as much. In basketball, tennis, etc.,
there are no draws.

The main diagonal (of a square array, or a table, or a matrix) is the one which connects the top left
corner with the bottom right corner while the other longest diagonal is called the side diagonal. Dimensions
m× n of a table show that it has m rows and n columns.

In all problems on graph or checkered paper or plane, we assume that all small squares or cells are
uniform squares of side 1, and any vertex or node is the intersection of any two non-parallel lines of the grid,
i.e., is a vertex of a square.

A tableau or just table is a rectangular piece of graph paper cut along the lines of the grid.
Space means R3, i.e., our usual (mathematically speaking, Euclidean) three-dimensional space in which

for any two points the distance between them is defined.
In all problems involving light rays, billiard balls, etc., we assume that the angle of reflection is equal to

that of incidence.
ab . . . c denotes the positive integer whose (decimal, usually) digits are a, b, . . . , c.
An expression of the form aa . . . a︸ ︷︷ ︸

1993

bb . . . b︸ ︷︷ ︸
3991

means that a is repeated 1993 times and b is repeated 3991

times. Sometimes we write this explicitely if space permits.

∅ denotes the empty set, i.e., , the set without elements; we assume that ∅ is a subset of any set.
M ⊂ N denotes that every element of the set M belongs to N ; we say that N is a subset of M ; s ∈ S

denotes that the element s belongs to the set S; A \B = {a ∈ A : a 6∈ B} denotes the set-theoretic difference
of sets A and B.

The intersection of the sets M and N is denoted by M ∩N = {x : x ∈M and x ∈ N}; the union of two
sets M and N is denoted by M ∪N = {x : x ∈ M or (not exclusive) x ∈ N}; a disjoint union is the union
of nonintersecting sets; we often consider intersections and unions of several sets.

1Even this is sometimes wrong, but for the sake of argument we will consider such deviations as aliens, not humans.
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A partition of a set is its representation as the disjoint union of its subsets. An example: coloring each
element of the set in one color.

A (finite or infinite) family of sets A1, A2, . . . is a covering of a set M if every point of M belongs to
some Ai. One point of M can be covered several times (by different Ai.) A tiling is a covering (usually with
identical sets) such that each point of M is covered exactly once.

Often (but not in this book) the description of a set {ai}i∈I whose elements are indexed by the elements of a set I is to
the confusion of the reader abbreviated to {ai} that, strictly speaking, denotes just the one-element set consisting of ai.

The number of elements in a set S is called the cardinality of S and denoted by #(S) or card S.
The sets of all integer, nonnegative integer, natural, i.e., positive (in some books — not this one — non-

negative) integer, rational, real and complex numbers are denoted by Z, Z+,N, Q, R and C, respectively.
A 3-gon is called a triangle; a 4-gon is called a quadrilateral; a 5-gon is called a pentagon ; a 6-gon is

called a hexagon; a 7-gon is called a heptagon; a 8-gon is called a octagon; 1; a 10-gon is called a decagon;
etc.

A triangle with nonequal sides is called a scalene one; a triangle with two equal sides is called an
isosceles one. A regular polygon is a one with equal sides and equal angles but a triangle with equal sides
(and, therefore, angles) is called equilateral and never regular.

In this book we often abbreviate a straight line to line; otherwise it is called a curve, unless otherwise
specified. So a borderline or an airline is generally a curve while a broken line consists of segments of lines.
We use the term segment speaking of a line segment; when other segments appear, e.g., a spherical segment,
we say so.

A graph is a collection of points (vertices) connected with curves (edges). It often happens that having
constructed a graph we distill the objects under the discussion and relations between them. Several theorems
of the graph theory are often encountered (Euler’s, Hall’s, Menger’s theorems), cf. solutions to Problems .

A set of points in space are said to be in general position if no three of them lie on one line. A set of lines
in space are said to be in general position if no three of them pass through one point and any two intersect
(any three lines form a triangle).

The angle between two curves is the angle between the tangents to these curves at an intersection point.
(Obviously, there is a choice among two angles; a choice of orientation and order of the curves fixes one of
the angles. Often, however, it does not matter which of the angles we choose, i.e., if both angles are right
ones.)

A midperpendicular to a segment is the line perpendicular to the segment and intersecting it at its center.
The ray that bisects an angle, or part of the ray that lies inside the polygon under consideration, is called
the bisector of the angle. (The term perpendicular bisector is often used instead of midperpendicular but not
in this book.)

We say that a circle is inscribed into or circumscribed about a triangle if it is tangent to the triangle’s
three sides (from the inside of course) or passes through the triangle’s vertices, respectively. A circle is called
an escribed about a triangle if it is tangent, from the outside, to one side and the extensions of the triangle’s
two other sides.

Two lines (or their segments) in space are said to be skew if they do not intersect but are nonparallel;
the angle between skew lines is the angle between two intersecting lines parallel to the skew lines.

A dihedral angle is a spatial angle between two intersecting planes π1 and π2; it is measured as the angle
between two intersecting lines p1 and p2 perpendicular to the intersection line of the two planes and such
that p1 ⊂ π1, p2 ⊂ π2.

A trihedral angle is any one of the 8 convex parts of the space between three intersecting planes (with
no points of the planes inside it).

A quadrant is a quarter of the plane formed by coordinate axes. An octant is a trihedral angle with right
angles at all its planar angles.

Two figures that can be identified after (1) a parallel translation, or (2) a rotation, or (3) a reflection
through a plane or a line and (4) a composition of movements of types (1)– (3) are called equal2.

A great circle on a sphere is a one obtained by intersection of the sphere with a plane passing through
the sphere’s center.

1It is funny, no medium-sized dictionary contains a word with a Greek or Latin root for a 9-gon. In this book 9-gons are
discriminated, too: they never appear.

2Lately the books on elementary mathematics made the life of many a student and their instructors much more thrilling
by introducing the terms equivalent for figures of equal area and congruent for figures that can be identified after an orientation-
preserving transformation. The usage of the fancy term “congruent” would have been OK if it were not that much at variance
with our every day usage of the language and selfcontradictory at times.



14 INTRODUCTION

An angle with vertex at the center of a circle is often measured in radians or degrees, same as the arc it
subtends on the circle, so the notation of the form ∠A = 1

2˘
BC makes sense.

[a, b) denotes the set of real numbers x such that a ≤ x < b; we similarly define [a, b], (a, b), etc. We
sometimes write ]a, b[ for (a, b), ]a, b] for (a, b], etc. Observe that either of a and b here might be equal to
−∞ or ∞.

[x] denotes the integer part of x, i.e., the greater integer that does not exceed x, e.g. [5] = 5,
[
1 1

2

]
= 1,

[3/4] = 0, [3/2] = 1, [π] = 3, [−1.5] = −2, etc.
{x} = x− [x] denotes the fractional part of x.
n! = 1 · 2 · 3 · . . . · (n− 1) · n; this reads factorial (of) n. Clearly, 1! = 1; we convene that 0! = 1.
(2n)!! = 2 ·4 ·6 · . . . · (2n−2) ·2n denotes the product of n consecutive even numbers (reads semi-factorial

of 2n).
(2n − 1)!! = 1 · 3 · 5 · . . . · (2n − 3) · (2n − 1) denotes the product of n consecutive odd numbers (reads

semi-factorial of 2n− 1).
Clearly, (2n)!! · (2n− 1)!! = (2n)!

The inverse functions sin−1, cos−1, etc. were denoted in the USSR and in many older books by arcsin,
arccos, etc. The oldfashioned notation has an advantage: no chance to confuse (except by accident) the
value of the inverse function at a point with the reciprocal of the value of the function, e.g., generally,
arcsin(x) 6= (sin(x))−1.

Recall that
x = arcsin y ⇐⇒ |y| ≤ 1, |x| ≤ π

2
; y = sinx

z = arccos t⇐⇒ |t| ≤ 1, |z| ∈ [0, π]; t = cos z.

lg x stands for log10 x and lnx or log x for the natural logarithm with base

e = lim
n→∞

(
1 +

1
n

)n

= 2.71828 . . . .

A periodic decimal fraction is usually abbreviated to

an . . . a1a0.a−1 . . . a−m(a−m−1 . . . a−m−t),

where the digits in parentheses constitute the least period (of length t).
a−n = 1

an for a positive integer n.
Two numbers a and b are called incommensurable if a

b 6∈Q.

Facts from algebra. An integer a is said to be divisible by an integer b if a = bc for some integer c;

in this case a is a multiple of b (and c) and b is a divisor of a; this is sometimes denoted as a
... b or b | a, e.g.

a
... 2 if and only if a is an even number. A proper divisor of a is an integer divisor b such that 1 < b < |a|. A

prime number is an integer p > 1 without proper divisors.
Let a and b be positive integers; we denote by GCD(a, b) or just (a, b) for brevity their greatest common

divisor, i.e., the maximal positive integer c such that both a and b are divisible by c. We denote by LCM(a, b)
their least common multiple, the least positive integer divisible by both a and b. The following property of
GCD and LCM is often used to calculate LCM : GCD(a, b)× LCM(a, b) = ab.

The above definition of GCD(a, b) can be used to define GCD(a, b) for a, b ∈ Z when b 6= 0; the above
definition of LCM(a, b) fits any nonzero integers; these generalized notions satisfy

GCD(a, b)× LCM(a, b) = |ab|.
Numbers a and b such that (a, b) = 1 are called relatively prime or coprime if GCD(a, b) = 1; if a and b

are relatively prime then ac
... b implies c

... b.
* * *

We use divisibility theorems to prove by the rule of contraries the existence of irrational numbers, e.g.,√
2,
√

3 are irrational. (The same idea applies to
√
q and

√
pq for prime p, q.)

The fundamental theorem of arithmetic. Every integer n > 1 is the product of its prime divisors
defined uniquely up to a permutation. In particular, if p1 < p2 < . . . < ps are all divisors of an integer n,
then the representation

n = pk1
1 p

k2
2 . . . pks

s , where k1, . . . , ks ∈ Z+,

always exists and is unique.
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An integer a is said to be divisible by a nonzero integer b with remainder r if

a = bq + r for some integers q and r, 0 ≤ r < |b|.
We sometimes use the notation r = r(a) for a given b. For a fixed b the possible values of r(a) are 0, 1,

. . . , b − 1 and are called residues modulo b. Two numbers x and y are congruent modulo m if (x − y) ...m.
We write x ≡ y (mod m).

It is easy to demonstrate that if a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡ b + d (mod n) and
ac ≡ bd (mod n).

Similarly, given polynomials f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 and g(x) = bmx
m + bm−1x

m−1 +
· · ·+ b1x+ b0, we say that f(x) is divisible by g(x) if f(x) = g(x)q(x) for some polynomial q(x).

Recall, that the degree of a polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is the greatest power
of its nonzero monomial; we write deg f(x) = n. If g(x) 6= 0 it is always possible to uniquely represent f(x)
in the form

f(x) = g(x)q(x) + r(x), where deg r(x) < deg g(x).
The above formula implies

Bezout’ theorem: For any number x0 a polynomial f(x) can be represented in the form

f(x) = q(x)(x− x0) + r(x), where q(x) is a polynomial.

Proof. In the displayed formula take g(x) = x − x0, deg r(x) < deg(x − x0) = 1; hence, r(x) is a
constant fumction: r(x) = r(x0), as was required. Q.E.D.

If f(x0) = 0, then x0 is a root or a zero of the polynomial f ; this is true if and only if f is divisible by
x− x0.

The fundamental theorem of algebra. Every nonconstant polynomial f(x) with complex coefficients
has (deg f) complex roots.

Inequalities. Cauchy’s inequality1

a1 + a2 + . . .+ an

n
≥ n
√
a1 . . . an for a1 ≥ 0, a2 ≥ 0, . . . , an ≥ 0

relates the arithmetic mean (the lhs) and the geometric mean (the rhs). One can prove it by induction
(rather tedeous job). A particular case is the relation (prove it!):

a1 + a2

2
≥ √a1 · a2 ≥ 2

1
a1

+ 1
a2

,

where the last term is the harmonic mean.
Though we will not use it in this book, it is too tempting not to mention here the following fact (prove it yourself). Denote

by Sp(a, b) =
“

ap + bp

2

” 1
p

for any non-negative real a, b and p 6= 0 the p-th order mean of a and b. On Fig. 1 the following

proposition is illustrated:
If a < b then a ≤ Sp(a, b) ≤ Sq(a, b) ≤ b for any p ≤ q.

Figure 1. (N1) Figure 2. (N2)

The means of order p and −p are related: Sp(a, b)S−p(a, b) = ab. One can prove (do it!) that lim
n→∞S 1

n
(a, b) =

√
ab and,

therefore, it is natural to define S0(a, b) as
√

ab.

Progressions. An arithmetic progression is a sequence {xn, where n ∈ N} in which xn = xn−1 + d.
Hence, xn = x0 + nd.

Example. The progression xn = n (hence, d = 1) is often referred to as the natural series.

1Sometimes called Schwarz’ inequality in Germany and Bounyakovsky’s inequality in Russia.
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For an arithmetic progression {xn}n∈N we have (add x0 + ...+ xn with xn + ...+ x0 term-wise):

n∑

k=0

xk =
x0 + xn

2
(n+ 1).

A geometric progression is a sequence of nonzero terms {xn}n∈N in which xn = xn−1q. Hence, xn =
qn · x0. An example: xn = qn. For a geometric progression {xn}n∈N with q 6= 1 we have:

n∑

k=0

xk = x0
1− qn+1

1− q .

If |q| < 1, then |qn| tends to 0 as n→∞; hence, we can define the infinite sum of all terms of the geometric

progression to be
∞∑

k=0

xk = x0
1

1− q .

A Fibonacci sequence is a sequence {xn}n∈N in which xn = xn−1 + xn−2. Sometimes n is allowed to
run over Z. Most often we encounter the sequence with x0 = 0, x1 = 1, i.e.,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

The rule of sum and the rule of product. Let A and B be finite sets, n ≥ 1 and m ≥ 1 be their
cardinalities, respectively.

S) If A and B have no common elements then there are exactly n+m elements contained in the union
of these sets.

P) There are exactly nm ordered pairs (a, b) with a ∈ A, b ∈ B.
The rule of product enables one to calculate Ck

n — the number of ways to choose k elements from n
given (indistinguishable) ones. The answer: Ck

n = n!
k!(n−k)! . Another common notation for this number is(n

k

)
, reads: n choose k.
For any numbers a, b and a nonnegative integer n we have the binomial formula:

(a+ b)n =
n∑

k=0

Ck
na

kbn−k.

Observe that Ck
n = Cn−k

n and deduce important identities:
n∑

k=0

Ck
n = (1 + 1)n = 2n and

n∑
k=0

(−1)nCk
n = 0.

Vièta’s theorem. The roots x1, x2 of a quadratic equation ax2 + bx + c = 0 satisfy the following
relations: x1 + x2 = −b, x1 · x2 = c.

Facts from geometry. A midline of a triangle (the midline of a trapezoid) is the line segment con-
necting midpoints of two sides of the triangle (trapezoid). The midline’s characteristic property (prove it!):
the midline is equal to a half the third side of the triangle (a half sum of the base and the upper side of the
trapezoid).

The diameter of a set in space (plane, line) is the maximum (more exactly, the least upper bound) of
distances between every pair of its points.

A figure is called convex if together with any pair of its points it contains the segment that connects
them. The convex hull of a set is the figure formed by segments that connect every pair of points of the
given set.

Any polygon is assumed to be non-selfintersecting and convex unless otherwise specified.
For a triangle ABC with sides a, b, c opposite angles A, B, C, respectively, the height, the bisector and

the median dropped from the vertex with angle A onto side a (or its continuation) is denoted by ha, la and
ma. Similar notations are used for the other angles.

We often denote by r and R the (length of the) radii of the inscribed and the circumscribed circles,
respectively.

The inner and the outer tangents to two circles on the plane are those of the form plotted on Fig. 2 and
denoted by tin and tout, respectively.

The orthocenter of a triangle is the intersection point of the triangle’s hights.
The law of sines: a

sin A = b
sin B = c

sin C = 2R.
The law of cosines: c2 = a2 + b2 − 2ab cosC.
We will often denote the area of a polygon P by SP .
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Formulas for calculating the area of a triangle ABC:

SABC = 1
2aha = 1

2ab sinC =
√
p(p− a)(p− b)(p− c),

where p = 1
2 (a+ b+ c) (often denoted by s) is the semiperimeter. The last formula (with the square root)

is called Heron’s formula.
Thales’ theorem. On the legs of an angle parallel straight lines intercept the segments whose lengths

satisfy: a : b : c = a′ : b′ : c′, cf. Fig. 3.

Figure 3. (N3) Figure 4. (N4)

Theorem on medians. The three medians of a triangle meet at one point. This point divides every
median into two segments with the ratio of their lengths 2 : 1 (counting from the corresponding vertex).

Theorem on bisectors. All three bisectors of a triangle meet at one point — the center of the inscribed
circle.

Theorem on a bisector. The bisector of the internal angle C of a triangle ABC divides the opposite
side c into segments a′ and b′, adjacent to the sides a and b, respectively, so that a′ : b′ = a : b.

Theorem on midperpendiculars. The three midperpendiculars of a triangle meet at one point —
the center of the circumscribed circle.

Theorem on heights. The three heights of a triangle meet at one point — the center of the cir-
cumscribed circle for the triangle on whose sides lie the vertices A, B, C and which are parallel to the
corresponding sides of 4ABC, see Fig. 4. The intersection point of heights is called the orthocenter of
4ABC.

Criteria for two triangles to be equal. Two triangles ABC and A′B′C ′ are equal if and only if any
of the following is satisfied:

1) |AB| = |A′B′|, |AC| = |A′C ′| and ∠A = ∠A′;
2) |AB| = |A′B′|, ∠A = ∠A, and ∠B = ∠B′;
3) a = a′, b = b′, c = c′.
The measure of a central angle in a circle is equal to the measure of the base arc this angle intercepts.

The measure of the inscribed angle in a circle is equal to half the measure of the base arc this angle intercepts,
see Fig. 4.

Theorem on three perpendiculars. Let k and l be two straight lines such that a plane Π contains
k and the projection m of l on Π is a straight line. Then (k ⊥ l) if and only if k ⊥ m.

Instruments you can use to draw figures on a plane. Calipers allow one to measure the distance
between any two points and find a point on a previously drawn line at a given distance from some point on
that line. Unlike compasses, they do not let you draw a circle. A compass is used to draw a circle of any
given radius around a fixed point on a plane and on the surface of a sphere. (The radius of the circle on the
sphere is unknown.)

A one-sided ruler allows one to draw straight lines; a two-sided ruler enables us to draw parallel lines
with the distance between them equal to the width of the ruler. These rulers are like a regular ruler but
without marks.

A protractor is used to translate any given angle on a plane in such a way that one of the legs of the
angle assumes any given position.
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Miscellenea. Let i be the imaginary unit, i.e., i2 = −1. Euler’s formula holds:

eiϕ = cosϕ+ i sinϕ. (E)

This remarkable formula is the only one worth memorizing in the whole of trigonometry: since for any
complex numbers z and w we have ezew = ez+w, the reader will quickly learn to use (E) to derive in no time
the facts like sin(a+ b) = sin a cos b+ sin b cos a.

The inner (or scalar) product of two nonzero vectors a and b, denoted by a ·b or by (a,b), is defined as
|a||b| cosϕ, where ϕ is the angle between a and b. If (a1, a2, a3) and (b1, b2, b3) are Cartesian coordinates of
a and b, then (a,b) = a1b1 + a2b2 + a3b3.

If either a or b is 0, we set (a,b) = 0.

Solutions of a couple of problems require some topology. In the majority of problems, where some
notions from topology seem to be needed, the answer can, actually, be guessed regardless, with the help of
common sence, often called by mathematicians physical considerations. For example, when talking about a
line segment, it is often inessential for the answer to be derived whether the segment’s endpoints belong to
it or not; we consider it not as a set, but as a structureless solid.

Still, in several problems it helps to know that any open interval (a, b), the union of any number of
intervals and the intersection of any finite number of intervals is called an open set on the line. If a point P
belongs to an open interval, this interval is called its open neighborhood. A point P ∈ M is called an inner
one for the set M if there is an open neighborhood of P that belongs to M . For example, every point of
interval (a, b) is inner (prove it!). A point P ∈ M is called an outer one for the set M if there is an open
neighborhood of P that does not belong to M . A point that is neither inner nor outer is called a boundary
one.

On the plane, the open discs {x, y | (x− a)2 + (y− b)2 < r2} play the role of open intervals in the above
definition. In space the discs are replaced with open balls {x, y, z | (x− a)2 + (y − b)2 + (z − c)2 < r2}.

Observe that an open interval considered not on the line but on the plane or in space does not consist
anymore of inner points: the open sets have changed.

The end of the proof is sometimes marked with a or Q.E.D.



Selected lectures of mathmathematics circles

Dirichlet’s principle
(Summary of Acad. I. M. Gelfand’s lecture for 9-th –11-th graders)

First, Gelfand proposed the following
Problem: An infinite number of narrow parallel ditches

√
2 apart have been dug out across a very long

straight road, see Fig. L1. Prove that no matter how narrow these ditches are, a pedestrian with a step of
length 1 m inevitably steps into a ditch.

Figure 1. (Fig.L1) Figure 2. (Fig.L2)

A short proof follows from Dirichlet’s or pigeonhole principle.
Indeed, suppose we can ‘wind’ the road onto a reel of circumference

√
2 m, see Fig. L2. Then all ditches

coincide and every step of the pedestrian is marked on the circle by an arc 1 m long. Let us mark the
pedestrian’s traces (points where the pedestrian touched the ground) after each step. We must prove that
at least one of these traces belongs to the interior of a small arc on the circle representing the ditches no
matter how short length h of this arc may be.

It is easy to see that if it is possible to find k and l such that the distance between the traces of the
k-th step and (k+ l)-th step along the circle is less than h, then the desired statement will be easy to prove.

Figure 3. (Fig.L3)

Indeed, after l more steps the (k + 2l)-th trace moves again by a distance less than h, see Fig. L3;
next we consider another l steps, and so on. Now, it is clear that after several groups of l steps we will
inevitably discover a trace that falls in a ditch (since by hopping each time the same distance less than h
it is impossible to hop over a ditch of width h).

Thus, we should find two traces on the circle with the distance between them less than h. This is where
the rabbits (pigeons) come in handy.

Let us divide the circle into arcs of lengths less than h and call these arcs hutches. Suppose there are p
of them. If we take more than p traces (observe that no two traces coincide since

√
2 is irrational) then by

17
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Dirichlet’s principle at least one of the hutches contains more than one trace (rabbit). The distance between
two traces that belong to one arc (hutch) is less than h. This proves our statement.

As a second example of the same realm of ideas, consider the following
Problem. Prove that there exists a power of 2 whose decimal expression begins with three nines, i.e.,

2n = 999 . . . .
In other words, prove that there exist integers n and k such that

999 · 10k ≤ 2n < 10k+3

or, equivalently,
k + lg(999) ≤ n lg 2 < k + 3.

It is easy to see that this problem is quite similar to the initial one, the only difference being that here
the length of the ‘step’ is equal to lg 2 and that the distance between two neighboring ‘ditches’ of width
3− lg(999) is equal to 1.

In general, if p is not a power of 10, then among the numbers p, p2, p3, . . . we can find one whose
decimal expression begins with any given combination of numbers.

Further elaboration of the same argument leads to a number of interesting theorems of algebra and
geometry. Here are some of them:

1) Let l be a ray originating from a point on the x-axis, tanα an irrational number, α the angle between
the ray and the x-axis. Then l never crosses a point with integer coordinates but passes however close to
some of such points.

2) There is a positive integer n such that sinn < 10−10.
3) If numbers α and β are incommensurable with π and with each other, then for any prescribed distance1

ε an n can be chosen so that2 | sin(nα) + sin(nβ)− 2| < ε although sin(nα) + sin(nβ) is not equal to 2 for
any n.

4) If the radii of circles F and G are incommensurable (i.e., their ratio is irrational) then as circle F
rolls without slipping along the fixed circle G any point of F traces a curve (called epicycloid), see Fig. L4)
whose cusps are dense3 on G.

In conclusion of the lecture Gelfand discussed some qualitative estimates connected with Dirichlet’s
principle. For example, the problem on the pedestrian striding along the road with ditches was modified as
follows: “How often will the pedestrian step into a ditch?”

Nondecimal number systems4

(Summary of A. M. Yaglom’s lecture for 7-th and 8-th graders)

First, Yaglom challenged the students to play against him the game ‘Nim’. This is a game played on
the blackboard. Three pieces are placed on the ‘chessboard’ with three rows, see Fig L4. Each player can
move any of the pieces to the right as far as (s)he likes. The winner is the one who makes the last move.

Figure 4. (Fig.L4)

Yaglom had prepared a number of winning positions and, using them, easily won several sets on the
blackboard, the audience cheering the players. This experiment convinced the students that there existed
winning and losing positions; then Yaglom led to the idea to practice playing Nim on a small chessboard.

Further on, Yaglom told the audience about nondecimal number systems. Fix a number q. Any positive
integer x can be expressed in the form x = an ·qn +an−1 ·qn−1 + . . .+a1 ·q+q0, where 0 ≤ ai < q. If q = 10,
we have the standard decimal representation, usually written in the abbreviated form as x = anan−1 . . . a1a0.

1ε usually stands among mathematicians for a small number; I wanted to show that it can be very small. D.L.
2You should make sure that you understand why this means that n can be chosen so that the distance between the points

sin(nα) + sin(nβ) and 2 is smaller than ε.
3i.e., any arc of G hosts infinitely many of the cusp points.
4For details see [YY].
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If q = 2, we get the binary system widely used in activities related with computers and coding. With
respect to this number system any number is expressed with the help of only two figures, 0 and 1, e.g.
1 = 12, 2 = 102, 4 = 1002, 8 = 10002, 9 = 10012, etc. (Here the subscript indicates “the base” of the number
system). Fractions can also be written in the same fashion, e.g. 0.1012 = 1 · 2−1 + 0 · 2−2 + 1 · 2−3.

Next, Yaglom said that, more generally, a number system is a method to express numbers with the help
of a certain “basis” u1, u2, . . . , uk, . . . as follows:

N = a1 · u1 + a2 · u2 + . . .+ ak · uk + . . . , (∗)
where the basis need not necessarily be the sequence of powers of a fixed number q and where the k-th
“digit” ak does not exceed ak/ak−1.

For instance, take for a basis the sequence of factorials, i.e., take uk+1 = (k + 1)uk, u0 = 1. Then any
number N is expressed in the form (∗), where the k-th “digit” ak does not exceed k = ak/ak−1, for example

1000 = 1 · 720 + 2 · 120 + 1 · 24 + 2 · 6 + 2 · 2 + 0 · 1 = 121220Fa.

The Fibonacci number system is another example. Its basis is of the form

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . (i.e., uk+2 = uk+1 + uk), . . .

With respect to this system, any digit is either 0 or 1, as in the binary one, but here no two 1’s can
stand in a row1, e.g.

100 = 1 · 89 + 0 · 55 + 0 · 34 + 0 · 21 + 0 · 13 + 1 · 8 + 0 · 5 + 1 · 3 + 0 · 2 + 0 · 1 = 1000010100Fib.

Exercise. 1) How to pass from one number system to another?
2) Write the multiplication table for the above systems.
3)∗ How to express fractions in the Fibonacci system?

Then Yaglom used the binary system to discuss possible victories and defeats in Nim. Together with
the audience they derived the rule:

A position (a, b, c) is a losing one if all sums of digits of all numbers a, b and c in the binary system
corresponding to the same position are even.

The lecture ended with an analysis in terms of the Fibonacci system of another game, zh̀ı sh́ı zi (reads
”tsin shi tsi”) which in Chinese means throwing stones; its Western name is Withoff’s game. Zh̀ı sh́ı zi
differs from Nim in that its board has two rows; a player can shift with every move either one chip (to any
place) or one can simultaneously shift both chips by the same distance, cf. Fig. L5.

Figure 5. (Fig.L5)

Yaglom proved that a position (a, b), where a < b, loses if aFib ends with an even number of zeros and
bFib = a0Fib.

Here is a sketch of a proof.
Positions ([nτ2], [nτ2]), where n = 1, 2, . . . and τ ≈ 1.618 . . . is the positive root of the quadratic equation x2 = x+1, win.
Proof is based on the following lemma.
Lemma. Let X, Y be positive irrational numbers such that

1

X
+

1

Y
= 1. (∗)

Then every positive integer can be uniquely represented as either [ k
X

] or [ l
Y

] for some k, l ∈N.

Proof. Among numbers 1, 2, . . . , n there are [ n
X

] numbers of the form [kX] and [ n
Y

] numbers of the form [lY ]. Since

1
X

+ 1
Y

= 1, it follows that n
X

+ n
Y

= n =⇒ [ n
X

] + [ n
Y

] = n− 1. Similarly, among 1, 2, . . . , n + 1 there are n such numbers.

Therefore, between n and n + 1 there is exactly one such number, Q.E.D.
Now, let us solve the problem. Since τ and τ2 satisfy relation (∗), every natural number is of the form either [nτ ] or [mτ2].

Moreover, it is clear that
[nτ2]− [nτ ] = n. (∗∗)

Hence, the pairs ([mτ2], [mτ ]) cover the whole natural series, and differences (∗∗) are distinct for distinct m. But this means
exactly that we have found the set of loosing positions for the first player, Q.E.D.

Can you figure out how to explicitely incorporate the Fibonacci system in the proof?

1It is rather difficult to explain why! For a solution see [YY].



20 SELECTED LECTURES OF MATHMATHEMATICS CIRCLES

Indefinite second-order equations
(Summary of CMA B. N. Deloné’s lecture for 9-th – 10-th graders)

Deloné began with a short story about indefinite second-order equations for two integer unknowns. The
most interesting among them is Pell’s equation:

x2 −my2 = 1, (∗)
where m is a positive integer which is not a perfect square.

Theorem. Equation (∗) has infinitely many solutions.
To prove this let us take a rectangular coordinate system u, v and consider vectors a = (1, 1) and

b = (
√
m,−√m). All points M such that OM = xa + yb, where x, y are integers, form a lattice closely

related with the properties of equation (∗):
If M is one of the points of the lattice, then in coordinate system u, v the coordinates of M are

u = x+ y
√
m, v = x− y√m

and therefore uv = x2 −my2.
Thus, the proof of our Theorem reduces to the following
Problem: Prove that the hyperbola uv = 1 contains infinitely many points of the lattice. (The hyperbola

is plotted by the dashed curve on Fig. L6.)

Figure 6. (Fig.L6) Figure 7. (Fig.L7)

One point of the lattice belonging to the hyperbola is obvious: the point M0 with coordinates u = v = 1.
The symmetric point M ′0 (u = v = −1) also belongs to the hyperbola. Suppose that in addition to these
two points we have found one more point of the lattice, M1(u1, v1) such that u1v1 = 1.

Consider the transformation ϕ of the plane that sends an arbitrary point A(u, v) into A′ = ϕ(A) with
the coordinates u′ = uu1, v′ = vv1. Clearly, ϕ transforms the hyperbola uv = 1 into itself, i.e., the
transformation moves the hyperbola along itself (and that is why mathematicians call such ϕ a hyperbolic
rotation). Indeed,

u′v′ = uu1 · vv1 = uv · u1v1 = 1.
Then, it is easy to verify that the hyperbolic rotations ϕ map the points of the lattice into points of the lattice.

Indeed, since M1 is a point of the lattice, it follows that

u1 = x1 + y1
√
m, v1 = x1 − y1

√
m,

where x1, y1 are integers. Further on, if

M(u, v) =
(
x+ y

√
m,x− y√m)

is one more point of the lattice, and x, y are integers, then

u′ = uu1 =
(
x+ y

√
m

) (
x1 + y1

√
m

)
= (xx1 + yy1m) + (xy1 + x1y)

√
m = X + Y

√
m;

v′ = vv1 = (x− y√m)(x1 − y1
√
m) = (xx1 + yy1m)− (xy1 + x1y)

√
m = X − Y√m,

i.e., point M ′ = ϕ(M) withcoordinates (u′, v′) also belongs to the lattice.
The hyperbolic rotation ϕ transforms M0(1, 1) into M1(u1, v1) and M1 into M2 = ϕ(M1), a new point

of the lattice belonging to the hyperbola. The same rotation transforms M2 into M3 = ϕ(M2) that also
belongs to the hyperbola, etc.
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The inverse rotation ϕ−1 that transforms (u, v) to point (u′ = u
u1

, v′ = v
v1

) sends M0 into M−1 =
ϕ−1(M0); M−2 = ϕ−1(M−1) , and so on. We get an infinite set of points of the lattice

. . . , M−2, M−1, M0, M1, M2, . . .

which belong to the hyperbola and turn into each other under the hyperbolic rotation ϕ.
Thus, it suffices to find on the hyperbola at least one point M1 different from M0 and M ′0.
In order to do this let us move the segment connecting points (1, 1) and (1,−1) to the right along the

u-axis until it meets a point N ′ of the lattice. If (u′, v′) are the coordinates of N ′, then |u′| < 1 and the
rectangle G′ with vertices at points (±u′,±v′) contains only three points of the lattice: the origin O, the
point N ′ and the point symmetric to N ′ with respect to O.

Now, let us move the right edge of the rectangle along the u-axis until we encounter a new point
N ′′(u′′, v′′) of the lattice. Then we may again move the right edge of the rectangle G′′, now with vertices at
points (±u′′,±v′′), along the u-axis, etc. (see Fig. L7).

An elegant argument ascending to Herman Minkowski enables us to establish that the sequence of areas
of the rectangles G′, G′′, . . . (all these areas are integers) is bounded.

Therefore, among them, there are infinitely many rectangles with the same area. Hence, we can deduce
that among the N ′, N ′′, . . . there exist two points such that a hyperbolic rotation ψ sending one of them
into another maps the lattice into itself. Therefore, ψ transforms M0 into a different point of the lattice that
belongs to the hyperbola uv = 1.
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MOSCOW MATHEMATICAL OLYMPIADS 1 – 59

Olympiad 1 (1935)

Tour 1.1
Set 1.1.A

1.1.A.1. Find the ratio of two numbers if the ratio of their arithmetic mean to their geometric mean is
25 : 24.

1.1.A.2. Given the lengths of two sides of a triangle and that of the bisector of the angle between these
sides, construct the triangle.

1.1.A.3. The base of a pyramid is an isosceles triangle with the vertex angle α. The pyramid’s lateral
edges are at angle ϕ to the base. Find the dihedral angle θ at the edge connecting the pyramid’s vertex to
that of angle α.

Set 1.1.B
1.1.B.1. A train passes an observer in t1 sec. At the same speed the train crosses a bridge l m long. It

takes the train t2 sec to cross the bridge from the moment the locomotive drives onto the bridge until the
last car leaves it. Find the length and speed of the train.

1.1.B.2. Given three parallel straight lines. Construct a square three of whose vertices belong to these
lines.

1.1.B.3. The base of a right pyramid is a quadrilateral whose sides are each of length a. The planar
angles at the vertex of the pyramid are equal to the angles between the lateral edges and the base. Find the
volume of the pyramid.

Set 1.1.C
1.1.C.1. Find four consecutive terms a, b, c, d of an arithmetic progression and four consecutive terms

a1, b1, c1, d1 of a geometric progression such that a+ a1 = 27, b+ b1 = 27, c+ c1 = 39, and d+ d1 = 87.

1.1.C.2. Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the
radius of the inscribed circle is one third of one of the heights of the triangle.

1.1.C.3. The height of a truncated cone is equal to the radius of its base. The perimeter of a regular
hexagon circumscribing its top is equal to the perimeter of an equilateral triangle inscribed in its base. Find
the angle ϕ between the cone’s generating line and its base.

Set 1.1.D
1.1.D.1. Solve the system 




x2 + y2 − 2z2 = 2a2,
x+ y + 2z = 4(a2 + 1),
z2 − xy = a2.

1.1.D.2. In 4ABC, two straight lines drawn from an arbitrary point D on AB are parallel to AC and
BC and intersect BC and AC at F and G, respectively. Prove that the sum of the circumferences of the
circles circumscribed around 4ADG and 4BDF is equal to the circumference of the circle circumscribed
around 4ABC.

1.1.D.3. The unfolding of the lateral surface of a cone is a sector of angle 120◦. The angles at the base
of a pyramid constitute an arithmetic progression with a difference of 15◦. The pyramid is inscribed in the
cone. Consider a lateral face of the pyramid with the smallest area. Find the angle α between the plane of
this face and the base.

23
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Tour 1.2
Set 1.2.A

1.2.A.1. The median, bisector, and height, all originate at the same vertex of a triangle. Given the
intersection points of the median, bisector, and height with the circumscribed circle, construct the triangle.

1.2.A.2. Find the locus of points on the surface of a cube that serve as the vertex of the smallest angle
that subtends the diagonal.

1.2.A.3. Triangles 4ABC and 4A1B1C1 lie on different planes. Line AB intersects line A1B1; line
BC intersects line B1C1 and line CA intersects line C1A1. Prove that either the three lines AA1, BB1, CC1

meet at one point or that they are all parallel.

Set 1.2.B
1.2.B.1. How many real solutions does the following system have?{

x+ y = 2,
xy − z2 = 1.

1.2.B.2. Solve the system {
x3 − y3 = 2b,
x2y − xy2 = b.

1.2.B.3. Evaluate the sum: 13 + 33 + 53 + . . .+ (2n− 1)3.

Set 1.2.C
1.2.C.1. a) How many distinct ways are there are there of painting the faces of a cube six different

colors? (Colorations are considered distinct if they do not coincide when the cube is rotated.)
b)* How many distinct ways are there are there of painting the faces of a dodecahedron 12 different

colors? (Colorations are considered distinct if they do not coincide when the cube is rotated.)
1.2.C.2. How many ways are there of representing a positive integer n as the sum of three positive

integers? Representations which differ only in the order of the summands are considered to be distinct.
1.2.C.3. Denote by M(a, b, c, . . . , k) the least common multiple and by D(a, b, c, . . . , k) the greatest

common divisor of a, b, c, . . . , k. Prove that:
a) M(a, b)D(a, b) = ab;

b) M(a, b, c)D(a, b)D(b, c)D(a, c)
D(a, b, c)

= abc.

Olympiad 2 (1936)

Tour 2.1
2.1.1. Find a four-digit perfect square whose first digit is the same as the second, and the third is the

same as the fourth.
2.1.2. All rectangles that can be inscribed in an isosceles triangle with two of their vertices on the

triangle’s base have the same perimeter. Construct the triangle.
2.1.3 (P. Dirac’s problem.) Represent an arbitrary positive integer as an expression involving only 3

twos and any mathematical signs.
2.1.4. Consider a circle and a point P outside the circle. The angle of given measure with vertex at P

subtends a diameter of the circle. Construct the circle’s diameter with ruler and compass.
2.1.5. Find 4 consecutive positive integers whose product is 1680.

Tour 2.2
2.2.1. Solve the system: {

x+ y = a,
x5 + y5 = b5 .

2.2.2. Given an angle less than 180◦, and a point M outside the angle. Draw a line through M so that
the triangle, whose vertices are the vertex of the angle and the intersection points of its legs with the line
drawn, has a given perimeter.

2.2.3. The lengths of a rectangle’s sides and of its diagonal are integers. Prove that the area of the
rectangle is an integer multiple of 12.
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2.2.4. How many ways are there to represent 106 as the product of three factors? Factorizations which
only differ in the order of the factors are considered to be distinct.

2.2.5. Given three planes and a ball in space. In space, find the number of different ways of placing
another ball so that it would be tangent the three given planes and the given ball.

Olympiad 3 (1937)

Tour 3.1
3.1.1. Solve the system: 




x+ y + z = a,
x2 + y2 + z2 = a2,
x3 + y3 + z3 = a3.

3.1.2*. On a plane two points A and B are on the same side of a line. Find point M on the line such
that MA+MB is equal to a given length.

3.1.3. Two segments slide along two skew lines. Consider the tetrahedron with vertices at the endpoints
of the segments. Prove that the volume of the tetrahedron does not depend on the position of the segments.

Tour 3.2
3.2.1. Given three points that are not on the same straight line. Three circles pass through each pair

of the points so that the tangents to the circles at their intersection points are perpendicular to each other.
Construct the circles.

3.2.2*. Given a regular dodecahedron. Find how many ways are there to draw a plane through it so
that its section of the dodecahedron is a regular hexagon?

3.2.3. Into how many parts can an n-gon be divided by its diagonals if no three diagonals meet at one
point?

Olympiad 4 (1938)

Tour 4.1
4.1.? (See footnote 1 to Historical remarks.) In space 4 points are given. How many planes equidistant

from these points are there? Consider separately (a) the generic case (the points given do not lie on a single
plane) and (b) the degenerate cases.

Tour 4.2
4.2.1. The following operation is performed over points O1, O2, O3 and A in space. The point A is

reflected with respect to O1, the resultant point A1 is reflected through O2, and the resultant point A2

through O3. We get some point A3 that we will also consecutively reflect through O1, O2, O3. Prove that
the point obtained last coincides with A; see Fig. 1.

Figure 1. (Probl. 4.2.1)

4.2.2. What is the largest number of parts into which n planes can divide space?
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4.2.3. Given the base, height and the difference between the angles at the base of a triangle, construct
the triangle.

4.2.4. How many positive integers smaller than 1000 and not divisible by 5 and by 7 are there?

Olympiad 5 (1939)

Tour 5.1
5.1.1. Solve the system: 




3xyz − x3 − y3 − z3 = b3,
x+ y + z = 2b,
x2 + y2 − z2 = b2.

5.1.2. Prove that

cos 2π
5 + cos 4π

5 = −1
2 .

5.1.3. Consider points A, B, C. Draw a line through A so that the sum of distances from B and C to
this line is equal to the length of a given segment.

5.1.4. Solve the equation
√
a−√a+ x = x for x.

5.1.5. Prove that for any triangle the bisector lies between the median and the height drawn from the
same vertex. (See Fig. 2.)

Figure 2. (Probl. 5.1.5) Figure 3. (Probl. 5.2.3)

Tour 5.2
5.2.1. Factor a10 + a5 + 1 into nonconstant polynomials with integer coefficients.

5.2.2. Let the product of two polynomials of a variable x with integer coefficients be a polynomial with
even coefficients not all of which are divisible by 4. Prove that all the coefficients of one of the polynomials
are even and that at least one of the coefficients of the other polynomial is odd.

5.2.3. Given two points A and B and a circle, find a point X on the circle so that points C and D at
which lines AX and BX intersect the circle are the endpoints of the chord CD parallel to a given line MN .
(See Fig. 3.)

5.2.4. Find the remainder after division of 1010 + 10102
+ 10103

+ · · ·+ 101010
by 7.

5.2.5. Consider a regular pyramid and a perpendicular to its base at an arbitrary point P . Prove that
the sum of the lengths of the segments connecting P to the intersection points of the perpendicular with the
planes of the pyramid’s faces does not depend on the location of P .

5.2.6. What is the greatest number of parts that 5 spheres can divide the space into?
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Olympiad 6 (1940)

Tour 6.1
Grades 7− 8

6.1.7-8.1. Factor (b− c)3 + (c− a)3 + (a− b)3.
6.1.7-8.2. It takes a steamer 5 days to go from Gorky to Astrakhan downstream the Volga river and 7

days upstream from Astrakhan to Gorky. How long will it take for a raft to float downstream from Gorky
to Astrakhan?

6.1.7-8.3. How many zeros does 100! have at its end in the usual decimal representation?

6.1.7-8.4. Draw a circle that has a given radius R and is tangent to a given line and a given circle. How
many solutions does this problem have?

Grades 9− 10
6.1.9-10.1. Solve the system: {

(x3 + y3)(x2 + y2) = 2b5,
x+ y = b.

6.1.9-10.2. Consider all positive integers written in a row:

123456789101112131415 . . . .

Find the 206788-th digit from the left.

6.1.9-10.3. Construct a circle equidistant from four points on a plane. How many solutions are there?

6.1.9-10.4. Given two lines on a plane, find the locus of all points with the difference between the
distance to one line and the distance to the other equal to the length of a given segment.

6.1.9-10.5. Find all 3-digit numbers abc such that abc = a! + b! + c!.

Tour 6.2
Grades 7− 8

6.2.7-8.1. See Problem 2.1.1.

6.2.7-8.2. Points A, B, C are vertices of an equilateral triangle inscribed in a circle. Point D lies on
the shorter arc,

˘
AB (not

˘
ACB); see Fig. 4. Prove that AD +BD = DC.

Figure 4. (Probl. 6.2.7-8.2)

6.2.7-8.3. How does one tile a plane, without gaps or overlappings, with the tiles equal to a given
irregular quadrilateral?

6.2.7-8.4. How many pairs of integers x, y are there between 1 and 1000 such that x2 + y2 is divisible
by 49?

Grades 9− 10
6.2.9-10.1*. Given an infinite cone. The measure of its unfolding’s angle is equal to α. A curve on

the cone is represented on any unfolding by the union of line segments. Find the number of the curve’s
self-intersections.

6.2.9-10.2. Which is greater: 300! or 100300?
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6.2.9-10.3. The center of the circle circumscribing 4ABC is mirrored through each side of the triangle
and three points are obtained: O1, O2, O3. Reconstruct 4ABC from O1, O2, O3 if everything else is erased.

6.2.9-10.4. Let a1, . . . , an be positive numbers. Prove the inequality:
a1

a2
+
a2

a3
+
a3

a4
+ · · ·+ an−1

an
+
an

a1
≥ n.

6.2.9-10.5. How many positive integers x less than 10 000 are there such that 2x−x2 is divisible by 7 ?

Olympiad 7 (1941)

Tour 7.1
Grades 7− 8

7.1.7-8.1. Construct a triangle given its height and median — both from the same vertex — and the
radius of the circumscribed circle.

7.1.7-8.2. Find the number 523abc divisible by 7, 8 and 9.
7.1.7-8.3. Given a quadrilateral, the midpoints A, B, C, D of its consecutive sides, and the midpoints

of its diagonals, P and Q. Prove that 4BCP = 4ADQ.
7.1.7-8.4. A point P lies outside a circle. Consider all possible lines drawn through P so that they

intersect the circle. Find the locus of the midpoints of the chords — segments the circle intercepts on these
lines.

7.1.7-8.5. Prove that 1 plus the product of any four consecutive integers is a perfect square.

Grades 9− 10
7.1.9-10.1. See Problem 7.1.7-8.2.
7.1.9-10.2. On the sides of a parallelogram, squares are constructed outwards. Prove that the centers

of these squares are vertices of a square.
7.1.9-10.3. A polynomial P (x) with integer coefficients takes odd values at x = 0 and x = 1. Prove

that P (x) has no integer roots.
7.1.9-10.4. Given points M and N , the bases of heights AM and BN of 4ABC and the line to which

the side AB belongs. Construct 4ABC.
7.1.9-10.5. Solve the equation:

|x+ 1| − |x|+ 3|x− 1| − 2|x− 2| = x+ 2.

7.1.9-10.6. How many roots does equation sinx = x
100 have?

Tour 7.2
Grades 7− 8

7.2.7-8.1. Prove that it is impossible to divide a rectangle into five squares of distinct sizes. (Cf.
Problem 7.2.9-10.1.)

7.2.7-8.2*. Given 4ABC, divide it into the minimal number of parts so that after being flipped over
these parts can constitute the same 4ABC.

7.2.7-8.3. Consider4ABC and a pointM inside it. We moveM parallel to BC untilM meets CA, then
parallel to AB until it meets BC, then parallel to CA, and so on. Prove that M traverses a self-intersecting
closed broken line and find the number of its straight segments.

7.2.7-8.4. Find an integer a for which (x − a)(x − 10) + 1 factors in the product (x + b)(x + c) with
integers b and c.

7.2.7-8.5. Prove that the remainder after division of the square of any prime p > 3 by 12 is equal to 1.
7.2.7-8.6. Given three points H1, H2, H3 on a plane. The points are the reflections of the intersection

point of the heights of the triangle 4ABC through its sides. Construct 4ABC.

Grades 9− 10
7.2.9-10.1. Prove that it is impossible to divide a rectangle into six squares of distinct sizes.
7.2.9-10.2. On a plane, several points are chosen so that a disc of radius 1 can cover every 3 of them.

Prove that a disc of radius 1 can cover all the points.
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7.2.9-10.3. Find nonzero and nonequal integers a, b, c so that x(x − a)(x − b)(x − c) + 1 factors into
the product of two polynomials with integer coefficients.

7.2.9-10.4. Solve in integers the equation

x+ y = x2 − xy + y2.

7.2.9-10.5. Given two skew perpendicular lines in space, find the set of the midpoints of all segments
of given length with the endpoints on these lines.

7.2.9-10.6. Construct a right triangle, given two medians drawn to its legs.

Olympiad 8 (1945)

Tour 8.1
Grades 7− 8

8.1.7-8.1. Divide a27 − b27 by (a+ b)(a2 + b2)(a4 + b4) . . . (a26 + b2
6). (Cf. Problem 8.1.9-10.1).

8.1.7-8.2. Prove that for any positive integer n the following inequality holds:
1

n+ 1
+

1
n+ 2

+ · · ·+ 1
2n

>
1
2
.

8.1.7-8.3. Find all two-digit numbers ab such that ab+ ba is a perfect square.
8.1.7-8.4. Prove that it is impossible to divide a scalene triangle into two equal triangles.
8.1.7-8.5. Two circles are tangent externally at one point. Common external tangents are drawn to

them and the tangent points are connected. Prove that the sum of the lengths of the opposite sides of the
quadrilateral obtained are equal.

Grades 9− 10
8.1.9-10.1. Divide a2k − b2k by (a+ b)(a2 + b2)(a4 + b4) . . . (a2k−1 + b2

k−1). (See Problem 8.1.7-8.2.)
8.1.9-10.2. Find three-digit numbers sucvh that any its positive integer power ends with the same three

digits and in the same order.
8.1.9-10.3. The system {

x2 − y2 = 0,
(x− a)2 + y2 = 1

generally has four solutions. For which a the number of solutions of the system is equal to three or two?
8.1.9-10.4. A right triangle ABC moves along the plane so that the vertices B and C of the triangle’s

acute angles slide along the sides of a given right angle. Prove that point A fills in a line segment and find
its length.

Tour 8.2
Grades 7− 8

8.2.7-8.1. Given the 6 digits: 0, 1, 2, 3, 4, 5. Find the sum of all even four-digit numbers which can be
expressed with the help of these figures (the same figure can be repeated).

8.2.7-8.2. Suppose we have two identical cardboard polygons. We placed one polygon upon the other
one and aligned. Then we pierced polygons with a pin at a point. Then we turned one of the polygons
around this pin by 25◦30′. It turned out that the polygons coincided (aligned again). What is the minimal
possible number of sides of the polygons?

8.2.7-8.3. The side AD of a parallelogram ABCD is divided into n equal segments. The nearest to A
division point P is connected with B. Prove that line BP intersects the diagonal AC at point Q such that
AQ = AC

n+ 1; see Fig. 5.

8.2.7-8.4. Segments connect vertices A, B, C of 4ABC with respective points A1, B1, C1 on the
opposite sides of the triangle. Prove that the midpoints of segments AA1, BB1, CC1 do not belong to one
straight line.

Grades 9− 10
8.2.9-10.1. Solve in integers the equation

xy + 3x− 5y = −3.
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Figure 5. (Probl. 8.2.7-8.3) Figure 6. (Probl. 9.1.7-8.2)

8.2.9-10.2. The numbers a1, a2, . . . , an are equal to 1 or −1. Prove that

2 sin
(
a1 + a1a2

2 + a1a2a3
4 + · · ·+ a1a2 . . . an

2n−1

)
π
4 = a1

√

2 + a2

√
2 + a3

√
2 + · · ·+ an

√
2.

In particular, for a1 = a2 = · · · = an = 1 we have

2 sin
(
1 + 1

2 + 1
4 + · · ·+ 1

2n−1

)
π
4 = 2 cos π

2n+1 =

√
2 +

√
2 + · · ·+

√
2.

8.2.9-10.3. A circle rolls along a side of an equilateral triangle. The radius of the circle is equal to the
height of the triangle. Prove that the measure of the arc intercepted by the sides of the triangle on this circle
is equal to 60◦ at all times.

Olympiad 9 (1946)

Tour 9.1
Grades 7− 8

9.1.7-8.1. What is the largest number of acute angles that a convex polygon can have?

9.1.7-8.2. Given points A, B, C on a line, equilateral triangles ABC1 and BCA1 constructed on seg-
ments AB andBC, and midpointsM andN of AA1 and CC1, respectively. Prove that4BMN is equilateral.
(We assume that B lies between A and C, and points A1 and C1 lie on the same side of line AB, see Fig. 6.)

9.1.7-8.3. Find a four-digit number such that the remainders after its division by 131 and 132 are 112
and 98, respectively.

9.1.7-8.4. Solve the system of equations:



x1 + x2 + x3 = 6,
x2 + x3 + x4 = 9,
x3 + x4 + x5 = 3,
x4 + x5 + x6 = −3,
x5 + x6 + x7 = −9,
x6 + x7 + x8 = −6,
x7 + x8 + x1 = −2,
x8 + x1 + x2 = 2.

9.1.7-8.5. Prove that after completing the multiplication and collecting the terms

(1− x+ x2 − x3 + · · · − x99 + x100)(1 + x+ x2 + · · ·+ x99 + x100)

has no monomials of odd degree.

Grades 9− 10
9.1.9-10.1. Given two intersecting planes α and β and a point A on the line of their intersection. Prove

that of all lines belonging to α and passing through A the line which is perpendicular to the intersection line
of α and β forms the greatest angle with β.
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9.1.9-10.2. Through a point M inside an angle a line is drawn. It cuts off this angle a triangle of the
least possible area. Prove that M is the midpoint of the segment on this line that the angle intercepts.

9.1.9-10.3. Prove that n2 + 3n+ 5 is not divisible by 121 for any positive integer n.
9.1.9-10.4. Prove that for any positive integer n the following identity holds

(2n)!
n!

= 2n(2n− 1)!!.

9.1.9-10.5. Prove that if α and β are acute angles and α < β, then
tanα
α

<
tanβ
β

.

Tour 9.2
Grades 7− 8

9.2.7-8.1. Two seventh graders and several eightth graders take part in a chess tournament. The two
seventh graders together scored eight points. The scores of eightth graders are equal. How many eightth
graders took part in the tournament?

9.2.7-8.2. Prove that for any integers x and y we have:

x5 + 3x4y − 5x3y2 − 15x2y3 + 4xy4 + 12y5 6= 33.

9.2.7-8.3. On the legs of ∠AOB, the segments OA and OB lie; OA > OB. Points M and N on lines
OA and OB, respectively, are such that AM = BN = x. Find x for which the length of MN is minimal.

9.2.7-8.4. Towns A1, A2, . . . , A30 lie on line MN . The distances between the consecutive towns are
equal. Each of the towns is the point of origin of a straight highway. The highways are on the same side of
MN and form the following angles with it:

No. 1 2 3 4 5 6 7 8 9 10
60◦ 30◦ 15◦ 20◦ 155◦ 45◦ 10◦ 35◦ 140◦ 50◦

No. 11 12 13 14 15 16 17 18 19 20
125◦ 65◦ 85◦ 86◦ 80◦ 75◦ 78◦ 115◦ 95◦ 25◦

No. 21 22 23 24 25 26 27 28 29 30
28◦ 158◦ 30◦ 25◦ 5◦ 15◦ 160◦ 170◦ 20◦ 158◦

Thirty cars start simultaneously from these towns along the highway at the same constant speed. Each
intersection has a gate. As soon as the first (in time, not in number) car passes the intersection the gate closes
and blocks the way for all other cars approaching this intersection. Which cars will pass all intersections
and which will be stopped?

9.2.7-8.5. A bus network is organized so that:
1) one can reach any stop from any other stop without changing buses;
2) every pair of routes has a single stop at which one can change buses;
3) each route has exactly three stops?
How many bus routes are there?

Grades 9− 10
9.2.9-10.1. Ninth and tenth graders participated in a chess tournament. There were ten times as many

tenth graders as ninth graders. The total score of tenth graders was 4.5 times that of the ninth graders.
What was the ninth graders score?

9.2.9-10.2. Given the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . , ascertain whether among its first 100 000 001
terms there is a number that ends with four zeros.

9.2.9-10.3. On the sides PQ, QR, RP of 4PQR segments AB, CD, EF are drawn. Given a point S0

inside triangle 4PQR, find the locus of points S for which the sum of the areas of triangles 4SAB, 4SCD
and 4SEF is equal to the sum of the areas of triangles 4S0AB, 4S0CD, 4S0EF .

Consider separately the case AB
PQ = CD

QR = EF
RP .

9.2.9-10.4. A town has 57 bus routes. How many stops does each route have if it is known that
1) one can reach any stop from any other stop without changing buses;
2) for every pair of routes there is a single stop where one can change buses;
3) each route has three or more stops?
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9.2.9-10.5. See Problem 9.2.7-8.4.

Olympiad 10 (1947)

Tour 10.1
Grades 7− 8

10.1.7-8.1. Find the remainder after division of the polynomial x+x3 +x9 +x27 +x81 +x243 by x− 1.

10.1.7-8.2. Prove that of 9 consecutive positive integers one that is relatively prime with the others can
always be selected.

10.1.7-8.3. Find the coefficients of x17 and x18 after expansion and collecting the terms of (1+x5+x7)20.

10.1.7-8.4. Given a convex pentagon ABCDE, prove that if an arbitrary point M inside the pentagon
is connected by lines with all the pentagon’s vertices, then either one or three or five of these lines cross the
sides of the pentagon opposite the vertices they pass.

10.1.7-8.5. Point O is the intersection point of the heights of an acute triangle 4ABC. Prove that the
three circles which pass: a) through O, A, B, b) through O, B, C, and c) through O, C, A, are equal. (See
Fig. 7.)

Figure 7. (Probl. 10.1.7-8.5)

Grades 9− 10
10.1.9-10.1. Find the coefficient of x2 after expansion and collecting the terms of the following expres-

sion (there are k pairs of parentheses):

((. . . (((x− 2)2 − 2)2 − 2)2 − · · · − 2)2 − 2)2.

10.1.9-10.2. See Problem 10.1.7-8.2 for 16 consecutive numbers.

10.1.9-10.3. How many squares different in size or location can be drawn on an 8 × 8 chess board?
Each square drawn must consist of whole chess board’s squares.

10.1.9-10.4. Which of the polynomials, (1+x2−x3)1000 or (1−x2 +x3)1000, has the greater coefficient
of x20 after expansion and collecting the terms?

10.1.9-10.5. Calculate (without calculators, tables, etc.) with accuracy to 0.00001 the product
(
1− 1

10

)(
1− 1

102

)
. . .

(
1− 1

1099

)
.

10.1.9-10.6. Given line AB and point M . Find all lines in space passing through M at distance d.

Tour 10.2
Grades 7− 8

10.2.7-8.1. Twenty cubes of the same size and appearance are made of either aluminum or of heavier
duralumin. How can one find the number of duralumin cubes using not more than 11 weighings on a balance
without weights? (We assume that all cubes can be made of aluminum, but not all of duralumin.)

10.2.7-8.2. How many digits are there in the decimal expression of 2100 ?
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10.2.7-8.3. Given 5 points on a plane, no three of which lie on one line. Pprove that four of these points
can be taken as vertices of a convex quadrilateral.

10.2.7-8.4. Prove that no convex 13-gon can be cut into parallelograms.
10.2.7-8.5. 101 numbers are selected from the set 1, 2, . . . , 200. Prove that among the numbers selected

there is a pair in which one number is divisible by the other.

Grades 9− 10
10.2.9-10.1. In space, n wire triangles are situated so that any two of them have a common vertex and

each vertex is the vertex of k triangles. Find all n and k for which this is possible.
10.2.9-10.2. In the numerical triangle

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

. . . . . . . . . . . . . . . . . .

each number is equal to the sum of the three nearest to it numbers from the row above it; if the number
is at the beginning or at the end of a row then it is equal to the sum of its two nearest numbers or just to
the nearest number above it (the lacking numbers above the given one are assumed to be zeros). Prove that
each row, starting with the third one, contains an even number.

10.2.9-10.3. Inside a square, consider a convex quadrilateral and inside the quadrilateral, take a point
A. It so happens that no three of the 9 points — the vertices of the square, of the quadrilateral and A —
lie on one line. Prove that 5 of these points are vertices of a convex pentagon.

10.2.9-10.4. One number less than 16, and 99 other numbers are selected from the set 1, 2, . . . , 200.
Prove that among the selected numbers there are two such that one divides the other.

10.2.9-10.5. Prove that if the four faces of a tetrahedron are of the same area they are equal.
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Olympiad 11 (1948)

Tour 11.1
Grades 7− 8

11.1.7-8.1. The sum of the reciprocals of three positive integers is equal to 1. What are all the possible
such triples?

11.1.7-8.2. Find all possible arrangements of 4 points on a plane, so that the distance between each
pair of points is equal to either a or b. For what ratios of a : b are such arrangements possible?

11.1.7-8.3. On a plane, n straight lines are drawn. Two domains are called adjacent if they border by
a line segment. Prove that the domains into which the plane is divided by these lines can be painted two
colors so that no two adjacent domains are of the same color.

Grades 9− 10

11.1.9-10.1. Prove that if 2n − 2
n is an integer, then so is 22n−1 − 2

2n − 1
.

11.1.9-10.2. Without tables and such (like calculators, virtually nonexistent in 1948) prove that
1

log2 π
+

1
log5 π

> 2.

11.1.9-10.3. Consider two triangular pyramids ABCD and A′BCD, with a common base BCD, and
such that A′ is inside ABCD. Prove that the sum of planar angles at vertex A′ of pyramid A′BCD is greater
than the sum of planar angles at vertex A of pyramid ABCD.

11.1.9-10.4. Consider a circle and a point A outside it. We start moving from A along a closed broken
line consisting of segments of tangents to the circle (the segment itself should not necessarily be tangent to
the circle) and terminate back at A, as on Fig. 8. (On Fig. 8the links of the broken line are solid.) We label
parts of the segments with a plus sign if we approach the circle and with a minus sign otherwise. Prove that
the sum of the lengths of the segments of our path, with the signs given, is zero.

Figure 8. (Probl. 11.1.9-10.4) Figure 9. (Probl. 11.2.7-8.2)

Tour 11.2
Grades 7− 8

11.2.7-8.1. Find all positive integer solutions of the equation

xy = yx (x 6= y).

11.2.7-8.2. Let R and r be the radii of the circles circumscribed and inscribed, respectively, in a triangle.
Prove that R ≥ 2r, and that R = 2r only for an equilateral triangle. (See Fig. 9.)

11.2.7-8.3. Can a figure have a greater than 1 and finite number of centers of symmetry?
11.2.7-8.4. The distance between the midpoints of the opposite sides of a convex quadrilateral is equal

to a half sum of lengths of the other two sides. Prove that the first pair of sides is parallel.
11.2.7-8.5. Two legs of an angle α on a plane are mirrors. Prove that after several reflections in the

mirrors any ray leaves in the direction opposite the one from which it came if and only if α = 90◦
n for an

integer n. Find the number of reflections.
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Grades 9− 10
11.2.9-10.1. Find all positive rational solutions of the equation

xy = yx (x 6= y).

11.2.9-10.2*. What is the radius of the largest possible circle inscribed into a cube with side a?
11.2.9-10.3. How many different integer solutions to the inequality |x|+ |y| < 100 are there?
11.2.9-10.4. What is the greatest number of rays in space beginning at one point and forming pairwise

obtuse angles?
11.2.9-10.5. Given three planar mirrors in space forming an octant (trihedral angle with right planar

angles), prove that any ray of light coming into this mirrored octant leaves it, after several reflections in
the mirrors, in the direction opposite to the one from which it came. Find the number of reflections. (Cf.
Problem 11.2.7-8.5.)

Olympiad 12 (1949)

Tour 12.1
Grades 7− 8

12.1.7-8.1. Prove that 27 1958 − 10 8878 + 10 1528 is divisible by 26 460.
12.1.7-8.2. Prove that if a planar polygon has several axes of symmetry, then all of them intersect at

one point.
12.1.7-8.3. Prove that x2 + y2 + z2 = 2xyz for integer x, y, z only if x = y = z = 0.

12.1.7-8.4. Consider a closed broken line of perimeter 1 on a plane. Prove that a disc of radius 1
4 can

cover this line.
12.1.7-8.5. Prove that for any triangle the circumscribed circle divides the line segment connecting the

center of its inscribed circle with the center of one of the escribed circles in halves.

Grades 9− 10
12.1.9-10.1. Find integers x, y, z, u such that

x2 + y2 + z2 + u2 = 2xyzu.

12.1.9-10.2. A finite solid body is symmetric about two distinct axes. Describe the position of the
symmetry planes of the body.

12.1.9-10.3. Find the real roots of the equation

x2 + 2ax+ 1
16 = −a+

√
a2 + x− 1

16 (0 < a < 1
4).

12.1.9-10.4. Given a set of 4n positive numbers such that any distinct choice of ordered foursomes of
these numbers constitutes a geometric progression. Prove that at least 4 numbers of the set are identical.

12.1.9-10.5. Prove that if opposite sides of a hexagon are parallel and the diagonals connecting opposite
vertices have equal lengths, a circle can be circumscribed around the hexagon.

Tour 12.2
Grades 7− 8

12.2.7-8.1. There are 12 points on a circle. Four checkers, one red, one yellow, one green and one blue
sit at neighboring points. In one move any checker can be moved four points to the left or right, onto the
fifth point, if it is empty. If after several moves the checkers appear again at the four original points, how
might their order have changed?

12.2.7-8.2. Consider two triangles, ABC and DEF , and any point O. We take any point X in 4ABC
and any point Y in 4DEF and draw a parallelogram OXY Z. See Fig. 10. Prove that the locus of all
possible points Z form a polygon. How many sides can it have? Prove that its perimeter is equal to the sum
of perimeters of the original triangles.

12.2.7-8.3. Consider 13 weights of integer mass (in grams). It is known that any 6 of them may be
placed onto two pans of a balance achieving equilibrium. Prove that all the weights are of equal mass.

12.2.7-8.4. The midpoints of alternative sides of a hexagon are connected by line segments. Prove that
the intersection points of the medians of the two triangles obtained coincide.
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Figure 10. (Probl. 12.2.7-8.2)

Figure
11. (Probl. 12.2.9-
10.2)

12.2.7-8.5. Prove that some (or one) of any 100 integers can always be chosen so that the sum of the
chosen integers is divisible by 100.

Grades 9− 10
12.2.9-10.1. See Problem 12.2.7-8.1.
12.2.9-10.2. Construct a convex polyhedron of equal “bricks” shown in Fig. 11.
12.2.9-10.3. What is a centrally symmetric polygon of greatest area one can inscribe in a given triangle?
12.2.9-10.4*. Prove that a number of the form 2n for a positive integer n may begin with any given

combination of digits.
12.2.9-10.5. Two squares are said to be juxtaposed if their intersection is a point or a segment. Prove

that it is impossible to juxtapose to a square more than eight non-overlapping squares of the same size.

Olympiad 13 (1950)

Tour 13.1
Grades 7− 8

13.1.7-8.1. On a chess board, the boundaries of the squares are assumed to be black. Draw a circle of
the greatest possible radius lying entirely on the black squares.

13.1.7-8.2. Given 555 weights: of 1 g, 2 g, 3 g, . . . , 555 g, divide them into three piles of equal mass.
13.1.7-8.3. See Problem 13.1.9-10.5 below for n = 3 circles.
13.1.7-8.4. Let a, b, c be the lengths of the sides of a triangle and A, B, C, the opposite angles. Prove

that
Aa+Bb+ Cc >

Ab+Ac+Ba+Bc+ Ca+ Cb

2
.

13.1.7-8.5. In a country, one can get from some point A to any other point either by walking, or by
calling a cab, waiting for it, and then being driven. Every citizen always chooses the method of transportation
that requires the least time. It turns out that the distances and the traveling times are as follows: 1 km
takes 10 min; 2 km takes 15 min; 3 km takes 17.5 min. We assume that the speeds of the pedestrian and
the cab, and the time spent waiting for cabs, are all constants. How long does it take to reach a point which
is 6 km from A?

Grades 9− 10
13.1.9-10.1. Let A be an arbitrary angle; let B and C be acute angles. Is there an angle x such that

sinx =
sinB · sinC

1− cosB · cosC · cosA
?
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13.1.9-10.2. Two triangular pyramids have common base. One pyramid contains the other. Can the
sum of the lengths of the edges of the inner pyramid be longer than that of the outer one?

13.1.9-10.3. Arrange 81 weights of 12, 22, . . . , 812 (all in grams) into three piles of equal mass.
13.1.9-10.4. Solve the equation

√
x+ 3− 4

√
x− 1 +

√
x+ 8− 6

√
x− 1 = 1.

13.1.9-10.5. We are given n circles O1, O2, . . . , On, passing through one point O. Let A1, . . . , An

denote the second intersection points of O1 with O2, O2 with O3, etc., On with O1, respectively. We choose
an arbitrary point B1 on O1 and draw a line segment through A1 and B1 to the second intersection with
O2 at B2, then draw a line segment through A2 and B2 to the second intersection with O3 at B3, etc., until
we get a point Bn on On. We draw the line segment through Bn and An to the second intersection with
O1 at Bn+1. If Bk and Ak coincide for some k, we draw the tangent to Ok through Ak until this tangent
intersects Ok+1 at Bk+1. Prove that Bn+1 coincides with B1.

Tour 13.2
Grades 7− 8

13.2.7-8.1. In a convex 13-gon all diagonals are drawn, dividing it into smaller polygons. What is the
greatest number of sides can these polygons have? (Cf. Problem 13.2.9-10.1.)

13.2.7-8.2. Prove that
1
2
· 3
4
· 5
6
· 7
8
· · · · · 99

100
<

1
10
.

13.2.7-8.3. A circle is inscribed in a triangle and a square is circumscribed around this circle so that no
side of the square is parallel to any side of the triangle. Prove that less than half of the square’s perimeter
lies outside the triangle.

13.2.7-8.4*. On a circle, 20 points are chosen. Ten non-intersecting chords without mutual endpoints
connect some of the points chosen. How many distinct such arrangements are there?

Grades 9− 10
13.2.9-10.1. In a convex 1950-gon all diagonals are drawn, dividing it into smaller polygons. What is

the greatest number of sides can these polygons have? (Cf. Problem 13.2.7-8.1.)
13.2.9-10.2. The numbers 1, 2, 3, . . . , 101 are written in a row in some order. Prove that it is always

possible to erase 90 of the numbers so that the remaining 11 numbers remain arranged in either increasing
or decreasing order.

13.2.9-10.3. A spatial quadrilateral is circumscribed around a sphere. Prove that all the tangent points
lie in one plane.

13.2.9-10.4. Is it possible to draw 10 bus routes with stops such that for any 8 routes there is a stop
that does not belong to any of the routes, but any 9 routes pass through all the stops?

Olympiad 14 (1951)

Tour 14.1
Grades 7− 8

14.1.7-8.1. Prove that x12 − x9 + x4 − x+ 1 > 0 for all x.
14.1.7-8.2. Let ABCD and A′B′C ′D′ be two convex quadrilaterals whose corresponding sides are equal,

i.e., AB = A′B′, BC = B′C ′, etc. Prove that if ∠A > ∠A′, then ∠B < ∠B′, ∠C > ∠C ′, ∠D < ∠D′.
14.1.7-8.3. Which number is greater:

2.00 000 000 004
(1.00 000 000 004)2 + 2.00 000 000 004

or
2.00 000 000 002

(1.00 000 000 002)2 + 2.00 000 000 002
?

14.1.7-8.4. Given an isosceles trapezoid ABCD and a point P . Prove that a quadrilateral can be
constructed from segments PA, PB, PC, PD.

14.1.7-8.5. Given a chain of 60 links each weighing 1 g. Find the smallest number of links that need
to be broken if we want to be able to get from the obtained parts all weights 1 g, 2 g, . . . , 59 g, 60 g? A
broken link also weighs 1 g. (Cf. Problem 14.1.9-10.4.)
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Grades 9− 10
14.1.9-10.1. Find the first three figures after the decimal point in the decimal expression of the number

0.123456789101112 . . . 495051
0.515049 . . . 121110987654321

.

14.1.9-10.2. One side of a convex polygon is equal to a, the sum of exterior angles at the vertices not
adjacent to this side are equal to 120◦. Among such polygons, find the polygon of the largest area.

14.1.9-10.3. We have two concentric circles. A polygon is circumscribed around the smaller circle and is
contained entirely inside the greater circle. Perpendiculars from the common center of the circles to the sides
of the polygon are extended till they intersect the greater circle. Each of the points obtained is connected
with the endpoints of the corresponding side of the polygon (Fig. 12). When is the resulting star-shaped
polygon the unfolding of a pyramid?

Figure 12. (Probl. 14.1.9-10.3)

Figure
13. (Probl. 14.1.9-
10.5)

14.1.9-10.4. Given a chain of 150 links each weighing 1 g. Find the smallest number of links that need
to be broken if we want to be able to get from the obtained parts all weights 1 g, 2 g, . . . , 149 g, 150 g? A
broken link also weighs 1 g. (Cf. Problem 14.1.7-8.5.)

14.1.9-10.5. Given three equidistant parallel lines. Express by points of the corresponding lines the
values of the resistance, voltage and current in a conductor so as to obtain the voltage V = I · R by
connecting with a ruler the points denoting the resistance R and the current I. (Each point of each scale
denotes only one number). See Fig. 13.

Tour 14.2
Grades 7− 8

14.2.7-8.1. Prove that the number 1 00 . . . 00︸ ︷︷ ︸
49 zeroes

5 00 . . . 00︸ ︷︷ ︸
99 zeroes

1 is not the cube of any integer.

14.2.7-8.2*. On a plane, given points A, B, C and angles ∠D, ∠E, ∠F each less than 180◦ and the
sum equal to 360◦, construct with the help of ruler and protractor a point O such that ∠AOB = ∠D,
∠BOC = ∠E and ∠COA = ∠F .

14.2.7-8.3. Prove that the sum 13 + 23 + · · ·+ n3 is a perfect square for all n.

14.2.7-8.4. What figure can the central projection of a triangle be? (The center of the projection does
not lie on the plane of the triangle.)

14.2.7-8.5. To prepare for an Olympiad 20 students went to a coach. The coach gave them 20 problems
and it turned out that (a) each of the students solved two problems and (b) each problem was solved by two
students. Prove that it is possible to organize the coaching so that each student would discuss one of the
problems that (s)he had solved, and so that all problems would be discussed.

14.2.7-8.6. Dividing x1951 − 1 by P (x) = x4 + x3 + 2x2 + x + 1 one gets a quotient and a remainder.
Find the coefficient of x14 in the quotient.

Grades 9− 10
14.2.9-10.1. A sphere is inscribed in an n-angled pyramid. Prove that if we align all side faces of the

pyramid with the base plane, flipping them around the corresponding edges of the base, then (1) all tangent
points of these faces to the sphere would coincide with one point, H, and (2) the vertices of the faces would
lie on a circle centered at H.
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14.2.9-10.2*. Given several numbers each of which is less than 1951 and the least common multiple of
any two of which is greater than 1951. Prove that the sum of their reciprocals is less than 2.

14.2.9-10.3. Among all orthogonal projections of a regular tetrahedron to all possible planes, find the
projection of the greatest area.

14.2.9-10.4. Consider a curve with the following property: inside the curve one can move an inscribed
equilateral triangle so that each vertex of the triangle moves along the curve and draws the whole curve.
Clearly, every circle possesses the property. Find a closed planar curve without self-intersections, that has
the property but is not a circle.

14.2.9-10.5*. A bus route has 14 stops (counting the first and the last). A bus cannot carry more than
25 passengers. We assume that a passenger takes a bus from A to B if (s)he enters the bus at A and gets
off at B. Prove that for any bus route

a) there are 8 distinct stops A1, B1, A2, B2, A3, B3, A4, B4 such that

no passenger rides from Ak to Bk for all k = 1, 2, 3, 4; (∗)
b) there might not exist 10 distinct stops A1, B1, . . . , A5, B5 with property (∗).

Olympiad 15 (1952)

Tour 15.1
Grade 7

15.1.7.1. The circle is inscribed in 4ABC. Let L, M , N be the tangent points of the circle with sides
AB, AC, BC, respectively. Prove that ∠MLN is always an acute angle.

15.1.7.2. Prove the identity:

(ax+ by + cz)2 + (bx+ cy + az)2 + (cx+ ay + bz)2 =

(cx+ by + az)2 + (bx+ ay + cz)2 + (ax+ cy + bz)2.

15.1.7.3. Prove that if all faces of a parallelepiped are equal parallelograms, they are rhombuses.

15.1.7.4. See Problem 15.1.8.2 below. When should the girl C leave N for A and B to arrive simulta-
neously in N?

Grade 8
15.1.8.1. Prove that if the orthocenter divides all hights of a triangle in the same proportion, the triangle

is equilateral.

15.1.8.2. Two men, A and B, set out from townM to townN , which is 15 km away. Their walking speed
is 6 km/hr. They also have a bicycle which they can ride at 15 km/hr. Both A and B start simultaneously,
A walking and B riding a bicycle until B meets a pedestrian girl, C, going from N to M . Then B lends
his bicycle to C and proceeds on foot; C rides the bicycle until she meets A and gives A the bicycle which
A rides until he reaches N . The speed of C is the same as that of A and B. The time spent by A and B
on their trip is measured from the moment they started from M until the arrival of the last of them at N .
When should C leave N to minimize this time?

15.1.8.3. Prove the identity:

(ax+ by + cz + du)2+(bx+ cy + dz + au)2 +

(cx+ dy + az + bu)2 + (dx+ ay + bz + cu)2 =

(dx+ cy + bz + au)2+(cx+ by + az + du)2 +

(bx+ ay + dz + cu)2 + (ax+ dy + cz + bu)2.

15.1.8.4. See Problem 15.1.7.3.

Grade 9
15.1.9.1. Given a geometric progression whose denominator q is an integer not equal to 0 or −1, prove

that the sum of two or more terms in this progression cannot equal any other term in it.

15.1.9.2. Prove that if |x| < 1 and |y| < 1, then
∣∣∣ x− y
1− xy

∣∣∣ < 1.
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15.1.9.3. 4ABC is divided by a straight line BD into two triangles. Prove that the sum of the radii
of circles inscribed in triangles ABD and DBC is greater than the radius of the circle inscribed in 4ABC.
(See Fig. 14.)

Figure 14. (Probl. 15.1.9.3) Figure 15. (Probl. 15.2.8.2)

15.1.9.4. A sequence of integers is constructed as follows: a1 is an arbitrary three-digit number, a2 is
the sum of squares of the digits of a1, a3 is the sum of squares of the digits of a2, etc. Prove that either 1
or 4 must occur in the sequence a1, a2, a3, . . . .

15.1.9.5. See Problem 15.1.10.5 below.

Grade 10
15.1.10.1. How arcsin(cos(arcsinx)) and arccos(sin(arccosx)) are related with each other?
15.1.10.2. Prove that (1− x)n + (1 + x)n < 2n for an integer n ≥ 2 and |x| < 1.
15.1.10.3. A sphere with center at O is inscribed in a trihedral angle with vertex S. Prove that the

plane passing through the three tangent points is perpendicular to OS.
15.1.10.4. Prove that if for any positive p all roots of the equation

ax2 + bx+ c+ p = 0

are real and positive then a = 0.
15.1.10.5. Given three skew lines. Prove that they are pair-wise perpendicular to their pair-wise per-

pendiculars.

Tour 15.2
Grade 7

15.2.7.1. Solve the system of equations



1− x1x2 = 0,
1− x2x3 = 0,
. . . . . . . . . . . . . . .
1− x14x15 = 0,
1− x15x1 = 0.

(Cf. Problem 15.2.9.1 below.)
15.2.7.2. In a convex quadrilateral ABCD, let AB + CD = BC +AD. Prove that the circle inscribed

in 4ABC is tangent to the circle inscribed in 4ACD.
15.2.7.3. Prove that if the square of a number begins with 0.9...9 (100 nines), then the number itself

begins with 0.9...9 (not less than 100 nines). (Cf. Problem 15.2.8.1 below).
15.2.7.4. Given a line segment AB, find the set of vertices C that form an acute triangle ABC.

Grade 8
15.2.8.1. Calculate

√
0.9...9 (60 nines) to 60 decimal places.

15.2.8.2. From a point C, tangents CA and CB are drawn to a circle O. From an arbitrary point N
on the circle, perpendiculars ND, NE, NF are dropped to AB, CA and CB, respectively. Prove that the
length of ND is the mean proportional of the lengths of NE and NF . (See Fig. 15).
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15.2.8.3. Seven chips are numbered 1, 2, 3, 4, 5, 6, 7. Prove that none of the seven-digit numbers
formed by these chips is divisible by any other of these seven-digit numbers.

15.2.8.4. 99 straight lines divide a plane into n parts. Find all possible values of n less than 199.

Grade 9
15.2.9.1. Solve the system of equations




1− x1x2 = 0,
1− x2x3 = 0,
. . . . . . . . . . . . . . . .
1− xn−1xn = 0,
1− xnx1 = 0.

How does the solution vary for distinct values of n?
15.2.9.2. How to arrange three right circular cylinders of diameter a

2 and height a into an empty cube
with side a so that the cilinders could not change position inside the cube? Each cylinder can, however,
rotate about its axis of symmetry.

15.2.9.3. See Problem 15.2.8.3.
15.2.9.4. In an isosceles triangle 4ABC, ∠ABC = 20◦ and BC = AB. Points P and Q are chosen on

sides BC and AB, respectively, so that ∠PAC = 50◦ and ∠QCA = 60◦. Prove that ∠PQC = 30◦. (See
Fig. 16).

Figure 16. (Probl. 15.2.9.4) Figure 17. (Probl. 16.1.8.1)

15.2.9.5. 200 soldiers occupy in a rectangle (military call it a square and educated military a carrée):
20 men (per row) times 10 men (per column).

In each row, we consider the tallest man (if some are of equal height, choose any of them) and of the 10
men considered we select the shortest (if some are of equal height, choose any of them). Call him A.

Next the soldiers assume their initial positions and in each column the shortest soldier is selected; of
these 20, the tallest is chosen. Call him B.

Two colonels bet on which of the two soldiers chosen by these two distinct procedures is taller: A or B.
Which colonel wins the bet?

Grade 10
15.2.10.1. Prove that for arbitrary fixed a1, a2, . . . , a31 the sum

cos 32x+ a31 cos 31x+ · · ·+ a2 cos 2x+ a1 cosx

can take both positive and negative values as x varies.
15.2.10.2. See Problem 15.2.9.2.
15.2.10.3. Prove that for any integer a the polynomial 3x2n+axn+2 cannot be divided by 2x2m+axm+3

without a remainder.
15.2.10.4. See Problem 15.2.9.4.
15.2.10.5. See Problem 15.2.9.5.
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Olympiad 16 (1953)

Tour 16.1
Grade 7

16.1.7.1. Prove that the sum of angles at the longer base of a trapezoid is less than the sum of angles
at the shorter base.

16.1.7.2. Find the smallest number of the form 1...1 in its decimal expression which is divisible by 3...3
(100 three’s).

16.1.7.3. Divide a segment in halves using a right triangle. (With a right triangle one can draw straight
lines and erect perpendiculars but cannot drop perpendiculars.)

16.1.7.4. Prove that n2 + 8n+ 15 is not divisible by n+ 4 for any positive integer n.

Grade 8
16.1.8.1. Three circles are pair-wise tangent to each other. Prove that the circle passing through the

three tangent points is perpendicular to each of the initial three circles; see Fig. 17.
16.1.8.2. Prove that if in the following fraction we have n radicals in the numerator and n − 1 in the

denominator, then

2−
√

2 +
√

2 + · · ·+√2

2−
√

2 +
√

2 + · · ·+√2
>

1
4
.

16.1.8.3. See Problem 16.1.7.2.
16.1.8.4. See Problem 16.1.7.3.

Grade 9
16.1.9.1. On the plane find the locus of points whose coordinates satisfy sin(x+ y) = 0.
16.1.9.2. Let AB and A1B1 be two skew segments, O and O1 their respective midpoints. Prove that

OO1 is shorter than a half sum of AA1 and BB1.
16.1.9.3. Prove that the polynomial x200 · y200 + 1 cannot be represented in the form f(x) · g(y), where

f and g are polynomials of only x and y, respectively.
16.1.9.4. Let A be a vertex of a regular star-shaped pentagon, the angle at A being less than 180◦ and

the broken line AA1BB1CC1DD1EE1 being its contour. Lines AB and DE meet at F . Prove that polygon
ABB1CC1DED1 has the same area as the quadrilateral AD1EF .

16.1.9.5. See Problem 16.1.8.2

Grade 10
16.1.10.1. See Problem 16.1.9.1.
16.1.10.2. Given a right circular cone and a point A. Find the set of vertices of cones equal to the given

one, with axes parallel to that of the given one, and with A inside them.
16.1.10.3. See Problem 16.1.9.3.
16.1.10.4. See Problem 16.1.9.4.
16.1.10.5. See Problem 16.1.8.2.

Tour 16.2
Grade 7

16.2.7.1. Prove that GCD(a+ b, LCM(a, b)) = GCD(a, b) for any a, b.
16.2.7.2. A quadrilateral is circumscribed around a circle. Its diagonals intersect at the center of the

circle. Prove that the quadrilateral is a rhombus.
16.2.7.3. On a plane, 11 gears are arranged so that the teeth of the first gear mesh with the teeth of

the second gear, the teeth of the second gear with those of the third gear, etc., and the teeth of the last gear
mesh with those of the first gear. Can the gears rotate? (See Problem 16.2.8.4 below.)

16.2.7.4. Inside a convex 1000-gon, 500 points are selected so that no three of the 1500 points — the
ones selected and the vertices of the polygon — lie on the same straight line. This 1000-gon is then divided
into triangles so that all 1500 points are vertices of the triangles, and so that these triangles have no other
vertices. How many triangles will there be?
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16.2.7.5. Solve the system




x1 + 2x2 + 2x3 + 2x4 + 2x5 = 1,
x1 + 3x2 + 4x3 + 4x4 + 4x5 = 2,
x1 + 3x2 + 5x3 + 6x4 + 6x5 = 3,
x1 + 3x2 + 5x3 + 7x4 + 8x5 = 4,
x1 + 3x2 + 5x3 + 7x4 + 9x5 = 5.

(See Problem 16.2.8.5 below.)

Grade 8
16.2.8.1. Let a, b, c, d be the lengths of consecutive sides of a quadrilateral, and S its area. Prove that

S ≤ (a + c)(b + d)
4 .

16.2.8.2. Somebody wrote 1953 digits on a circle. The 1953-digit number obtained by reading these
figures clockwise, beginning at a certain point, is divisible by 27. Prove that if one begins reading the figures
at any other place, one gets another 1953-digit number also divisible by 27.

16.2.8.3. On a circle, distinct points A1, . . . , An are chosen. Consider all possible convex polygons
all of whose vertices are among A1, . . . , An. These polygons are divided into 2 groups, the first group
comprising all polygons with A1 as a vertex, the second group comprising the remaining polygons. Which
group is more numerous?

16.2.8.4. On a plane, n gears are arranged so that the teeth of the first gear mesh with the teeth of the
second gear, the teeth of the second gear with those of the third gear, etc., and the teeth of the last gear
mesh with those of the first gear. (See Fig. 18.) Can the gears rotate?

Figure 18. (Probl. 16.2.8.4)

16.2.8.5. Let n = 100. Solve the system




x1 + 2x2 + 2x3 + 2x4 + 2x5 + · · ·+ 2xn = 1,
x1 + 3x2 + 4x3 + 4x4 + 4x5 + · · ·+ 4xn = 2,
x1 + 3x2 + 5x3 + 6x4 + 6x5 + · · ·+ 6xn = 3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1 + 3x2 + 5x3 + 7x4 + 9x5 + · · ·+ (2n− 1)xn = n.

Grade 9
16.2.9.1. See Problem 16.2.8.2.

16.2.9.2. Given triangle 4A1A2A3 and a straight line l outside it. The angles between the lines A1A2

and A2A3, A1A2 and A2A3, A2A3 and A3A1 are equal to α3, α1 and α2, respectively. The straight lines are
drawn through points A1, A2, A3 forming with l angles of π − α1, π − α2, π − α3, respectively. All angles
are counted in the same direction from l. Prove that these new lines meet at one point.
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16.2.9.3. Given the equations

ax2 + bx+ c = 0(1)

−ax2 + bx+ c = 0(2)

prove that if x1 and x2 are some roots of equations (1) and (2), respectively, then there is a root x3 of the
equation a

2x
2 + bx+ c = 0 such that either x1 ≤ x3 ≤ x2 or x1 ≥ x3 ≥ x2.

16.2.9.4. Given a 101×200 sheet of graph paper, we start moving from a corner square in the direction
of the square’s diagonal (not the sheet’s diagonal) to the border of the sheet, then change direction obeying
the laws of light’s reflection. Will we ever reach a corner square?

16.2.9.5. Divide a cube into three equal pyramids.

Grade 10
16.2.10.1. Find roots of the equation

1− x

1
+
x(x− 1)

1 · 2 − · · ·+ (−1)nx(x− 1) . . . (x− n+ 1)
n!

= 0.

16.2.10.2. See Problem 16.2.9.2.

16.2.10.3. Let x0 = 109, xn = x2
n−1+2

2xn−1
for n > 0. Prove that 0 < x36 −

√
2 < 10−9.

16.2.10.4. See Problem 16.2.9.5.
16.2.10.5. A knight stands on an infinite chess board. Find all places it can reach in exactly 2n moves.

Olympiad 17 (1954)

Tour 17.1
Grade 7

17.1.7.1. A regular star-shaped hexagon is split into 4 parts. Construct from them a convex polygon.
17.1.7.2. Given two convex polygons, A1A2 . . . An and B1B2 . . . Bn such that A1A2 = B1B2, A2A3 =

B2B3, . . . , AnA1 = BnB1 and n − 3 angles of one polygon are equal to the respective angles of the other.
Find whether these polygons are equal.

17.1.7.3. Find a four-digit number whose division by two given distinct one-digit numbers goes along
the following lines:

Figure 19. (Probl. 17.1.7.3)

17.1.7.4. Are there integers m and n such that m2 + 1954 = n2?
17.1.7.5. Define the maximal value of the ratio of a three-digit number to the sum of its digits.

Grade 8
17.1.8.1*. Cut out of a 3 × 3 square an unfolding of the cube with edge 1.
17.1.8.2. From an arbitrary point O inside a convex n-gon, perpendiculars are dropped to the (exten-

sions of the) sides of the n-gon. Along each perpendicular a vector is constructed, starting from O, directed
towards the side onto which the perpendicular is dropped, and of length equal to half the length of the
corresponding side; see Fig. 20. Find the sum of these vectors.

17.1.8.3. See Problem 17.1.7.3.
17.1.8.4. Find all solutions of the system consisting of 3 equations:

x
(
1− 1

2n

)
+ y

(
1− 1

2n+ 1

)
+ z

(
1− 1

2n+ 2

)
= 0 for n = 1, 2, 3.
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Figure 20. (Probl. 17.1.8.2)

17.1.8.5. See Problem 17.1.7.4.

Grade 9
17.1.9.1. Prove that if

x4
0 + a1x

3
0 + a2x

2
0 + a3x0 + a4 = 0 and 4x3

0 + 3a1x
2
0 + 2a2x0 + a3 = 0,

then

x4 + a1x
3 + a2x

2 + a3x+ a4

... (x− x0)2.

17.1.9.2. Delete 100 digits from the number 1234567891011 . . . 9899100 so that the remaining number
were as big as possible.

17.1.9.3. Given 100 numbers a1, . . . , a100 such that




a1 − 3a2 + 2a3 ≥ 0,
a2 − 3a3 + 2a4 ≥ 0,
. . . . . . . . . . . . . . . . . . . . . .
a99 − 3a100 + 2a1 ≥ 0,
a100 − 3a1 + 2a2 ≥ 0,

prove that the numbers are equal.

17.1.9.4. Consider 4ABC and a point S inside it. Let A1, B1, C1 be the intersection points of AS,
BS, CS with BC, AC, AB, respectively. Prove that at least in one of the resulting quadrilaterals AB1SC1,
C1SA1B, A1SB1C both angles at either C1 and B1, or C1 and A1, or A1 and B1 are not acute.

17.1.9.5. Do there exist points A, B, C, D in space, such that AB = CD = 8, AC = BD = 10, and
AD = BC = 13?

Grade 10
17.1.10.1. Find all real solutions of the equation x2 + 2x · sin(xy) + 1 = 0.

17.1.10.2. See Problem 17.1.9.2.

17.1.10.3. Given numbers a1 = 1, a2, . . . , a100 such that

ai − 4ai+1 + 3ai+2 ≥ 0 for all i = 1, 2, 3, . . . , 98,
a99 − 4a100 + 3a1 ≥ 0,
a100 − 4a1 + 3a2 ≥ 0.

Find a2, a3, . . . , a100. (cf. Problem 17.1.9.3.)

17.1.10.4. See Problem 17.1.9.4.

17.1.10.5. See Problem 17.1.9.5.
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Tour 17.2
Grade 7

17.2.7.1. Given a piece of graph paper with a letter assigned to each vertex of every square such that
on every segment connecting two vertices that have the same letter and are on the same line of the mesh,
there is at least one vertex with another letter. What is the least number of distinct letters needed to plot
such a picture?

17.2.7.2*. Solve the system



10x1 + 3x2 + 4x3 + x4 + x5 = 0,
11x2 + 2x3 + 2x4 + 3x5 + x6 = 0,
15x3 + 4x4 + 5x5 + 4x6 + x7 = 0,
2x1 + x2 − 3x3 + 12x4 − 3x5 + x6 + x7 = 0,
6x1 − 5x2 + 3x3 − x4 + 17x5 + x6 = 0,
3x1 + 2x2 − 3x3 + 4x4 + x5 − 16x6 + 2x7 = 0,
4x1 − 8x2 + x3 + x4 + 3x5 + 19x7 = 0.

17.2.7.3. How many axes of symmetry can a heptagon have?
17.2.7.4. Let 1, 2, 3, 5, 6, 7, 10, . . . , N be all the divisors of

N = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31

(the product of primes 2 to 31) written in increasing order. Below this series of divisors, write the following
series of 1’s or −1’s: write 1 below any number that factors into an even number of prime factors and below
a 1; write −1 below the remaining numbers. Prove that the sum of the series of 1’s and −1’s is equal to 0.
(Cf. Problem 17.2.8.5.)

17.2.7.5. The map of a town shows a plane divided into equal equilateral triangles. The sides of these
triangles are streets and their vertices are intersections; 6 streets meet at each junction. Two cars start
simultaneously in the same direction and at the same speed from points A and B situated on the same street
(the same side of a triangle). After any intersection an admissible route for each car is either to proceed in
its initial direction or turn through 120◦ to the right or to the left; see Fig. 21. Can these cars meet? (Either
prove that these cars won’t meet or describe a route by which they will meet.)

Figure 21. (Probl. 17.2.7.5)

Grade 8
17.2.8.1. A 17× 17 square is cut out of a sheet of graph paper. Each cell of this square has one of the

numbers from 1 to 70. Prove that there are 4 distinct squares whose centers A, B, C, D are the vertices of
a parallelogramsuch that AB ‖ CD, moreover, the sum of the numbers in the squares with centers A and C
is equal to that in the squares with centers B and D.

17.2.8.2. Given four straight lines, m1, m2, m3, m4, intersecting at O and numbered clockwise with O
as the center of the clock, we draw a line through an arbitrary point A1 on m1 parallel to m4 until the line
meets m2 at A2. We draw a line through A2 parallel to m1 until it meets m3 at A3. We also draw a line
through A3 parallel to m2 until it meets m4 at A4. Now, we draw a line through A4 parallel to m3 until it
meets m1 at B. Prove that OB ≤ OA1

2 . (See Fig. 22.)

17.2.8.3. See Problem 17.2.7.2.
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Figure 22. (Probl. 17.2.8.2)

17.2.8.4. See Problem 17.2.7.3.
17.2.8.5. Let 1, 2, 3, 5, 6, 7, 10, . . . , N be all the divisors of

N = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37

(the product of primes 2 to 37) written in increasing order. Below this series of divisors, write the following
series of 1’s or −1’s: write 1 below any number that factors into an even number of prime factors and below
a 1; write −1 below the remaining numbers. Prove that the sum of the series of 1’s and −1’s is equal to 0.
(Cf. Problem 17.2.7.4.)

Grade 9
17.2.9.1. Rays l1 and l2 pass through a point O. Segments OA1 and OB1 on l1, and OA2 and OB2

on l2, are drawn so that OA1
OA2

6= OB1
OB2

. Find the set of all intersection points of lines A1A2 and B1B2 as l2
rotates around O while l1 is fixed.

17.2.9.2. See Problem 17.2.8.2; prove that OB ≤ 1
4OA1. (See Fig. 22.)

17.2.9.3*. Positive numbers x1, x2, . . . , x100 satisfy the system{
x2

1 + x2
2 + · · ·+ x2

100 > 10 000,
x1 + x2 + · · ·+ x100 < 300.

Prove that among these numbers there are three whose sum is greater than 100.
17.2.9.4. Given a sequence of numbers a1, a2, . . . , a15, one can always construct a new sequence b1,

b2, . . . , b15, where bi is equal to the number of terms in the sequence {ak}15k=1 less than ai (i = 1, 2, . . . , 15).
Is there a sequence {ak}15k=1 for which the sequence {bk}15k=1 is 1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?

17.2.9.5. Consider five segments AB1, AB2, AB3, AB4, AB5. From each point Bi there can exit either
5 segments or no segments at all, so that the endpoints of any two segments of the resulting graph (system of
segments) do not coincide. (See Fig. 23.) Can the number of free endpoints of the segments thus constructed
be equal to 1001? (A free endpoint is an endpoint from which no segment begins.)

Figure 23. (Probl. 17.2.9.5)
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Grade 10
17.2.10.1. How many planes of symmetry can a triangular pyramid have?

17.2.10.2. See Problem 17.2.9.2.

17.2.10.3. See Problem 17.2.9.3.

17.2.10.4. The absolute values of all roots of the quadratic equation x2+Ax+B = 0 and x2+Cx+D = 0
are less then 1. Prove that so are absolute values of the roots of the quadratic equation

x2 + A+ C
2 x+ B +D

2 = 0.

17.2.10.5. Consider the set of all 10-digit numbers expressible with the help of figures 1 and 2 only.
Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is
written with not less than two 3’s.

Olympiad 18 (1955)

Tour 18.1
Grade 7

18.1.7.1. The numbers 1, 2, . . . , 49 are arranged in a square table as follows:

1 2 . . . 7
8 9 . . . 14
. . . . . . . . . . . .
43 44 . . . 49

Among these numbers we select an arbitrary number and delete from the table the row and the column
which contain this number. We do the same with the remaining table of 36 numbers, etc., 7 times. Find the
sum of the numbers selected. (See Problem 18.1.9.1 below.)

18.1.7.2. We are given a right triangle ABC and the median BD drawn from the vertex B of the right
angle. Let the circle inscribed in 4ABD be tangent to side AD at K. Find the angles of 4ABC if K
divides AD in halves.

18.1.7.3. Consider an equilateral triangle 4ABC and points D and E on the sides AB and BC such
that AE = CD. Find the locus of intersection points of AE with CD as points D and E vary.

18.1.7.4. Is there an integer n such that n2 + n+ 1 is divisible by 1955?

18.1.7.5. Find all rectangles that can be cut into 13 equal squares.

Grade 8
18.1.8.1. Let a, b, n be positive integers, b < 10 and 2n = 10a+ b. Prove that if n > 3, then 6 divides

ab.

18.1.8.2. Consider a quadrilateral ABCD and points K, L, M , N on sides AB, BC, CD and AD,
respectively, such that KB = BL = a, MD = DN = b and KL ∦ MN . Find the set of all the intersection
points of KL with MN as a and b vary.

18.1.8.3. A square table with 49 small squares is filled with numbers 1 to 7 so that in each row and in
each column all numbers from 1 to 7 are present. Let the table be symmetric through the main diagonal.
Prove that on this diagonal all the numbers 1, 2, 3, . . . , 7 are present. (See Problem 18.1.10.1 below.)

18.1.8.4. Which convex domains on a plane can contain an entire straight line?

18.1.8.5. There are four points A, B, C, D on a circle. Circles are drawn through each pair of neighbor-
ing points. Denote the intersection points of neighboring circles by A1, B1, C1, D1. (Some of these points
may coincide with previously given ones.) Prove that points A1, B1, C1, D1 lie on one circle; see Fig. 24.

Grade 9
18.1.9.1. The numbers 1, 2, . . . , k2 are arranged in a square table as follows:

1 2 . . . k
k + 1 k + 2 . . . 2k
. . . . . . . . . . . .

(k − 1)k + 1 (k − 1)k + 2 . . . k2
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Figure 24. (Probl. 18.1.8.5)

Among these numbers we select an arbitrary number and delete from the table the row and the column
which contain this number. We do the same with the remaining table of (k − 1)2 numbers, etc., k times.
Find the sum of the numbers selected.

18.1.9.2. Given two distinct nonintersecting circles none of which is inside the other, see Fig. 25. Find
the locus of the midpoints of all segments whose endpoints lie on the circles.

Figure 25. (Probl. 18.1.9.2)

18.1.9.3. Find all real solutions of the system:{
x3 + y3 = 1,
x4 + y4 = 1.

18.1.9.4. Suppose that primes a1, a2, . . . , ap form an increasing arithmetic progression and a1 > p.
Prove that if p is a prime, then the difference of the progression is divisible by p.

18.1.9.5. Inside 4ABC, there is fixed a point D such that AC −DA > 1 and BC − BD > 1. Prove
that EC − ED > 1 for any point E on segment AB; see Fig. 26.

Grade 10
18.1.10.1. A square table with n2 small squares is filled with numbers 1 to n so that in each row and

in each column all numbers from 1 to n are present. Let n be odd and the table be symmetric through the
main diagonal. Prove that on this diagonal all the numbers 1, 2, 3, . . . , n are present.

18.1.10.2. See Problem 18.1.9.3.
18.1.10.3. See Problem 18.1.9.5.
18.1.10.4. Given a trihedral angle with vertex O. Find whether there is a planar section ABC such

that the angles ∠OAB, ∠OBA, ∠OBC, ∠OCB, ∠OAC, ∠OCA are acute?
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Figure 26. (Probl. 18.1.9.5)

Tour 18.2
Grade 7

18.2.7.1. Find integer solutions of the equation

x3 − 2y3 − 4z3 = 0.

18.2.7.2. The quadratic expression ax2 +bx+c is the 4-th power (of an integer) for any integer x. Prove
that a = b = 0.

18.2.7.3. The centers O1, O2 and O3 of circles escribed about 4ABC are connected. Prove that
4O1O2O3 is an acute-angled one.

18.2.7.4. 25 chess players are going to participate in a chess tournament. All are on distinct skill levels,
and of the two players the one who plays better always wins. What is the least number of games needed to
select the two best players?

18.2.7.5. Cut a rectangle into 18 rectangles so that no two adjacent ones form a rectangle.

Grade 8
18.2.8.1*. The quadratic expression ax2 + bx + c is a square (of an integer) for any integer x. Prove

that ax2 + bx+ c = (dx+ e)2 for some integers d and e.
18.2.8.2*. Two circles are tangent to each other externally, and to a third one from the inside. Two

common tangents to the first two circles are drawn, one outer and one inner. Prove that the inner tangent
divides in halves the arc intercepted by the outer tangent on the third circle. (Cf. Problem 20.2.9.5.)

18.2.8.3. A point O inside a convex n-gon A1A2 . . . An is connected with segments to its vertices. The
sides of this n-gon are numbered 1 to n (distinct sides have distinct numbers). The segmentsOA1, OA2, . . . , OAn

are similarly numbered.
a) For n = 9 find a numeration such that the sum of the sides’ numbers is the same for all triangles

A1OA2, A2OA3, . . . , AnOA1.
b) Prove that for n = 10 there is no such numeration.

18.2.8.4. Let the inequality

Aa(Bb+ Cc) +Bb(Aa+ Cc) + Cc(Aa+Bb) >
ABc2 +BCa2 + CAb2

2
with given a > 0, b > 0, c > 0 hold for all A > 0, B > 0, C > 0. Is it possible to construct a triangle with
sides of lengths a, b, c?

18.2.8.5. Find all numbers a such that (1) for a fixed positive integer N all numbers [a], [2a], . . . , [Na]
are distinct and (2) all numbers

[
1
a

]
,
[
2
a

]
, . . . ,

[
N
a

]
, are distinct.

Grade 9
18.2.9.1. Given 4ABC, points C1, A1, B1 on sides AB, BC, CA, respectively, such that

AC1

C1B
=
BA1

A1C
=
CB1

B1A
=

1
n

and points C2, A2, B2 on sides A1B1, B1C1, C1A1 of 4A1B1C1, respectively, such that
A1C2

C2B1
=
B1A2

A2C1
=
C1B2

B2A1
= n.
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Prove that A2C2 ‖ AC, C2B2 ‖ CB, B2A2 ‖ BA.
18.2.9.2. On the numerical line, arrange a system of closed segments of length 1 without common points

(endpoints included) so that any infinite arithmetic progression with any difference and any first term has a
common point with a segment of the system.

18.2.9.3. Prove that the equation

xn − a1x
n−1 − a2x

n−2 − · · · − an−1x− an = 0, where a1 ≥ 0, a2 ≥ 0, . . . , an ≥ 0,

cannot have two positive roots.
18.2.9.4. See Problem 18.2.8.2.
18.2.9.5. Five men play several sets of dominoes (two against two) so that each player has each other

player once as a partner and two times as an opponent. Find the number of sets and all ways to arrange the
players.

Grade 10
18.2.10.1. Prove that if p

q is an irreducible rational number that serves as a root of the polynomial

f(x) = a0x
n + a1x

n−1 + · · ·+ an

with integer coefficients, then p− kq is a divisor of f(k) for any integer k.
18.2.10.2. See Problem 18.2.9.2.
18.2.10.3. A right circular cone stands on plane P . The radius of the cone’s base is r, its height is h.

A source of light is placed at distance H from the plane, and distance 1 from the axis of the cone. What is
the illuminated part of the disc of radius R, that belongs to P and is concentric with the disc forming the
base of the cone?

18.2.10.4. What greatest number of triples of points can be selected from 1955 given points, so that
each two triples have one common point?

18.2.10.5. Consider 4A0B0C0 and points C1, A1, B1 on its sides A0B0, B0C0, C0A0, points C2, A2,
B2 on the sides A1B1, B1C1, C1A1 of 4A1B1C1, respectively, etc., so that

A0B1

B1C0
=
B0C1

C1A0
=
C0A1

A1B0
= k,

A1B2

B2C1
=
B1C2

C2A1
=
C1A2

A2B1
=

1
k2

and, in general,
AnBn+1

Bn+1Cn
=
BnCn+1

Cn+1An
=
CnAn+1

An+1Bn
=

{
k2n for n even
1
k2n for n odd.

Prove that 4ABC formed by lines A0A1, B0B1, C0C1 is contained in 4AnBnCn for any n.

Olympiad 19 (1956)

Tour 19.1
Grade 7

19.1.7.1. Prove that there are no four points A, B, C, D on a plane such that all triangles 4ABC,
4BCD, 4CDA, 4DAB are acute ones.

19.1.7.2. Find all two-digit numbers x the sum of whose digits is the same as that of 2x, 3x, etc., 9x.
19.1.7.3. A closed self-intersecting broken line intersects each of its segments once. Prove that the

number of its segments is even.

19.1.7.4. Find all integers that can divide both the numerator and denominator of the ratio 5l + 6
8l + 7 for

an integer l.
19.1.7.5. What is the least number of points that can be chosen on a circle of length 1956, so that for

each of these points there is exactly one chosen point at distance 1, and exactly one chosen point at distance
2 (distances are measured along the circle)?

Grade 8
19.1.8.1. On sides AB and CB of 4ABC there are drawn equal segments, AD and CE, respectively,

of arbitrary length (but shorter than min(AB,BC)). Find the locus of midpoints of all possible segments
DE.
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19.1.8.2. In the decimal expression of a positive number, a, all decimals beginning with the third after
the decimal point, are deleted (i.e., we take an approximation of a with accuracy to 0.01 with deficiency).
The number obtained is divided by a and the quotient is similarly approximated with the same accuracy by
a number b. What numbers b can be thus obtained? Write all their possible values. (Cf. Problem 19.1.9.2,
19.1.10.2.)

19.1.8.3. On a circle of length 15 there are selected n points such that for each of them there is exactly
one selected point at distance 1 from it, and exactly one is selected point at distance 2 from it. (All distances
are measured along the circle.) Prove that n is divisible by 10. (Cf. Problem 19.1.7.5.)

19.1.8.4. Let a, b, c, d, l be integers. Prove that if the numerator and denominator of the ratio al + b
cl + d

are both divisible by k, then so is ad− bc. (Cf. Problem 19.1.7.4.)

19.1.8.5. On an infinite sheet of graph paper a table is drawn so that in each square of the table stands
a number equal to the arithmetic mean of the four adjacent numbers. Out of the table a piece is cut along
the lines of the graph paper. Prove that the largest number on the piece always occurs at an edge; see
Fig. 27, where x = 1

4 (a+ b+ c+ d).

Figure 27. (Probl. 19.1.8.5) Figure 28. (Probl. 19.1.10.4)

Grade 9
19.1.9.1. In a convex quadrilateral ABCD, consider quadrilateral KLMN formed by the centers of

mass of triangles ABC, BCD, DBA, CDA. Prove that the straight lines connecting the midpoints of the
opposite sides of quadrilateral ABCD meet at the same point as the straight lines connecting the midpoints
of the opposite sides of KLMN .

19.1.9.2. In the decimal expression of a positive number, a, all decimals beginning with the third after
the decimal point, are deleted (i.e., we take an approximation of a rounding off to 0.001 with deficiency).
The number obtained is divided by a and the quotient is similarly approximated with the same accuracy by
a number b. What numbers b can be thus obtained? Write all their possible values. (Cf. Problems 19.1.8.2,
19.1.10.2.)

19.1.9.3. See Problem 19.1.8.5.

19.1.9.4. Consider positive numbers h, s1, s2, and a spatial triangle 4ABC. How many ways are there
to select a point D so that the height of tetrahedron ABCD dropped from D equals h, and the areas of
faces ACD and BCD equal s1 and s2, respectively?

19.1.9.5. See Problem 19.1.8.4.

Grade 10
19.1.10.1. A square of side a is inscribed in a triangle so that two of the square’s vertices lie on the

base, and the other two lie on the sides of the triangle. Prove that if r is the radius of the circle inscribed
in the triangle, then r

√
2 < a < 2r.

19.1.10.2. In the decimal expression of a positive number, a, all decimals beginning with the third after
the decimal point, are deleted (i.e., we take an approximation of a with accuracy to 0.0001 with deficiency).
The number obtained is divided by a and the quotient is similarly approximated with the same accuracy by
a number b. What numbers b can be thus obtained? Write all their possible values. (Cf. Problems 19.1.8.2,
19.1.9.2.)
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19.1.10.3. See Problem 19.1.8.4.
19.1.10.4. Given a closed broken line A1A2A3 . . . An in space and a plane intersecting all its segments,

A1A2 at B1, A2A3 at B2, . . . , AnA1 at Bn, see Fig. 28, prove that
A1B1

B1A2
· A2B2

B2A3
· A3B3

B3A4
· · · · · AnBn

BnA1
= 1. (∗)

19.1.10.5. Prove that the system of equations



x1 − x2 = a,
x3 − x4 = b,
x1 + x2 + x3 + x4 = 1

has at least one solution in positive numbers if and only if |a|+ |b| < 1.

Tour 19.2
Grade 7

19.2.7.1. Let O be the center of the circle circumscribed around 4ABC, let A1, B1, C1 be symmetric
to O through respective sides of 4ABC. Prove that all hights of 4A1B1C1 pass through O, and all hights
of 4ABC pass through the center of the circle circumscribed around 4A1B1C1.

19.2.7.2. Points A1, A2, A3, A4, A5, A6 divide a circle of radius 1 into six equal arcs. Ray l1 from
A1 connects A1 with A2; ray l2 from A2 connects A2 with A3, and so on, ray l6 from A6 connects A6 with
A1. From a point B1 on l1 the perpendicular is dropped to l6; from the foot of this perpendicular another
perpendicular is dropped to l5, and so on. Let the foot of the 6-th perpendicular coincide with B1. Find the
length of segment A1B1. (Cf. Problem 19.2.9.5.)

19.2.7.3. 100 numbers (some positive, some negative) are written in a row. All of the following three
types of numbers are underlined: 1) every positive number, 2) every number whose sum with the number
following it is positive, 3) every number whose sum with the two numbers following it is positive. Can the
sum of all underlined numbers be (a) negative? (b) equal to zero?

19.2.7.4. 64 non-negative numbers whose sum equals 1956 are arranged in a square table, eight numbers
in each row and each column. The sum of the numbers on the two longest diagonals is equal to 112. The
numbers situated symmetrically with respect to any of the longest diagonals are equal. Prove that the sum
of numbers in any column is less than 1035. (Cf. Problem 19.2.8.2.)

19.2.7.5*. Assume that the number of a tree’s leaves is a multiple of 15. Neglecting the shade of the
trunk and branches prove that one can rip off the tree 7

15 of its leaves so that not less than 8
15 of its shade

remains.

Grade 8
19.2.8.1*. A shipment of 13.5 tons is packed in a number of weightless containers. Each loaded container

weighs not more than 350 kg. Prove that 11 trucks each of which is capable of carrying ≤ 1.5 ton can carry
this load.

19.2.8.2. 64 non-negative numbers whose sum equals 1956 are arranged in a square table, eight numbers
in each row and each column. The sum of the numbers on the two longest diagonals is equal to 112. The
numbers situated symmetrically with respect to any of the longest diagonals are equal. Prove that the sum
of numbers in any row is less than 518. (Cf. Problem 19.2.7.4.)

19.2.8.3. Find the union of all projections of a given line segment AB to all lines passing through a
given point O.

19.2.8.4. See Problem 19.2.7.3.
19.2.8.5*. In a rectangle of area 5 sq. units, 9 rectangles of area 1 are arranged. Prove that the area of

the overlap of some two of these rectangles is ≥ 1
9 . (Cf. Problem 19.210.2.)

Grade 9
19.2.9.1. See Problem 19.2.8.1.
19.2.9.2. 1956 points are chosen in a cube with edge 13. Is it possible to fit inside the cube a cube with

edge 1 that would not contain any of the selected points? (See Fig. 29.)
19.2.9.3. Given three numbers x, y, z denote the absolute values of the differences of each pair by x1,

y1, z1. From x1, y1, z1 form in the same fashion the numbers x2, y2, z2, etc. It is known that xn = x,
yn = y, zn = z for some n. Find y and z if x = 1.
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Figure 29. (Probl. 19.2.9.2)

19.2.9.4. A quadrilateral is circumscribed around a circle. Prove that the straight lines connecting
neighboring tangent points either meet on the extension of a diagonal of the quadrilateral or are parallel to
it. (See Fig. 30.)

Figure 30. (Probl. 19.2.9.4)

19.2.9.5*. Let A, B, C be three nodes of a graph paper. Prove that if 4ABC is an acute one, then
there is at least one more node either inside 4ABC or on one of its sides.

Grade 10
19.2.10.1. n numbers (some positive and some negative) are written in a row. Each positive number

and each number whose sum with several of the numbers following it is positive is underlined. Prove that
the sum of all underlined numbers is positive. (Cf. Problem 19.2.8.4.)

19.2.10.2. In a rectangle of area 5 sq. units, lie 9 arbitrary polygons each of area 1. Prove that the
area of the overlap of some two of these rectangles is ≥ 1

9 . (Cf. Problem 19.2.8.5.)

19.2.10.3. See Problem 19.2.9.3.

19.2.10.4*. Prove that if the trihedral angles at each of the vertices of a triangular pyramid are formed
by the identical planar angles, then all faces of this pyramid are equal.

19.2.10.5. Find points B1, B2, . . . , Bn on the extensions of sides A1A2, A2A3, . . . , AnA1 of a regular
n-gon A1A2 . . . An such that B1B2 ⊥ A1A2, B2B3 ⊥ A2A3, . . . , BnB1 ⊥ AnA1.

Olympiad 20 (1957)

Tour 20.1
Grade 7

20.1.7.1. Find all isosceles trapezoids that are divided into 2 isosceles triangles by a diagonal.

20.1.7.2. Let ax3 + bx2 + cx + d be divisible by 5 for given positive integers a, b, c, d and any integer
x. Prove that a, b, c and d are all divisible by 5.
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20.1.7.3. A snail crawls over a table at a constant speed. Every 15 minutes it turns by 90◦, and in-
between these turns it crawls along a straight line. Prove that it can return to the starting point only in an
integer number of hours.

20.1.7.4. See Problem 20.1.8.4.
20.1.7.5. The distance between towns A and B is 999 km. At every kilometer of the road that connects

A and B a sign shows the distances to A and B as follows:

0|999 1|998 2|997 . . . 998|1 999|0
How many signs are there, with both distances written with the help of only two distinct digits?

Grade 8
20.1.8.1. Given two concentric circles and a pair of parallel lines. Find the locus of the fourth vertices

of all rectangles with three vertices on the concentric circles, two vertices on one circle and the third on the
other and with sides parallel to the given lines. (See Fig. 31.)

Figure 31. (Probl. 20.1.8.1) Figure 32. (Probl. 20.1.10.2)

20.1.8.2. See Problem 20.1.7.3.
20.1.8.3. Of all parallelograms of a given area find the one with the shortest possible longer diagonal.
20.1.8.4. For any column and any row in a rectangular numerical table, the product of the sum of the

numbers in a column by the sum of the numbers in a row is equal to the number at the intersection of
the column and the row. Prove that either the sum of all the numbers in the table is equal to 1 or all the
numbers are equal to 0.

20.1.8.5. Let ax4 + bx3 + cx2 + dx + e be divisible by 7 for given positive integers a, b, c, d, e and all
integers x. Prove that a, b, c, d and e are all divisible by 7. (Cf. Problem 20.1.7.2.)

Grade 9
20.1.9.1. See Problem 20.1.8.4.
20.1.9.2. Solve the equation x3 − [x] = 3.
20.1.9.3. In a quadrilateral ABCD points M and N are the midpoints of the diagonals AC and BD,

respectively. The line through M and N meets AB and CD at M ′ and N ′, respectively. Prove that if
MM ′ = NN ′, then AD ‖ BC.

20.1.9.4. A student takes a subway to an Olympiad, pays one ruble and gets his change. Prove that if
he takes a tram (street car) on his way home, he will have enough coins to pay the fare without change.

Note: In 1957, the price of a subway ticket was 50 kopeks, that of a tram ticket 30 kopeks, the denomi-
nations of the coins were 1, 2, 3, 5, 10, 15, and 20 kopeks. (1 rouble = 100 kopeks.)

20.1.9.5. See Problem 20.1.10.5.

Grade 10
20.1.10.1. For which integer n is N = 20n + 16n − 3n − 1 divisible by 323?
20.1.10.2. The segments of a closed broken line in space are of equal length, and each three consecutive

segments are mutually perpendicular. Prove that the number of segments is divisible by 6. (Cf. Problem
20.1.7.3.) See Fig. 32.
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20.1.10.3. See Problem 20.1.9.3.

20.1.10.4. A student is going to a club. (S)he takes a tram, pays one ruble and gets the change. Prove
that on the way back by a tram (s)he will be able to pay the fare without any need to change. (See Note to
Problem 20.1.9.4.)

20.1.10.5. A planar polygon A1A2A3 . . . An−1An (n > 4) is made of rigid rods that are connected by
hinges. Is it possible to bend the polygon (at hinges only!) into a triangle? (See Fig. 33.)

Figure 33. (Probl. 20.1.10.5)

Tour 20.2
Grade 7

20.2.7.1. Straight lines OA and OB are perpendicular. Find the locus of endpoints M of all broken
lines OM of length l, which intersect each line parallel to OA or OB at not more than one point.

20.2.7.2. A radio lamp has a 7-contact plug, with the contacts arranged in a circle. The plug is inserted
into a socket with 7 holes. Is it possible to number the contacts and the holes so that for any insertion at
least one contact would match the hole with the same number? (Cf. Problem Problem 20.2.9.3.)

20.2.7.3. The lengths, a and b, of two sides of a triangle are known. What length should the third side
be, in order for the largest angle of the triangle to be of the least possible value?

20.2.7.4. A circle is inscribed in a triangle. The tangent points are the vertices of a second triangle in
which another circle is inscribed; its tangency points are the vertices of a third triangle; the angles of this
triangle are identical to those of the first triangle. Find these angles.

20.2.7.5. Eight consecutive numbers are chosen from the Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, . . . .
Prove that the sequence does not contain the sum of chosen numbers.

Grade 8
20.2.8.1. The lengths, a and b, of two sides of a triangle are known. What length should the third side

be in order for the smallest angle of the triangle to be of the greatest possible value? (Cf. Problem 20.2.7.3.)

20.2.8.2. Prove that the number of all digits in the sequence 1, 2, 3, . . . , 108 is equal to the number of
all zeros in the sequence 1, 2, 3, . . . , 109. (Cf. Problem 20.2.10.4.)

20.2.8.3. Given a point O inside an equilateral triangle 4ABC. Line OG connects O with the center
of mass G of the triangle and intersects the sides of the triangle, or their continuations, at points A′, B′, C ′

(See Fig. 34.). Prove that

A′O
A′G

+
B′O
B′G

+
C ′O
C ′G

= 3.
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Figure 34. (Probl. 20.2.8.3)

20.2.8.4. Solve the system: 



2x2
1

1 + x2
1

= x2,

2x2
2

1 + x2
2

= x3,

2x2
3

1 + x2
3

= x1.

20.2.8.5. A circle is inscribed in a scalene triangle. The tangent points are vertices of another triangle,
in which a circle is inscribed whose tangent points are vertices of a third triangle, in which a third circle is
inscribed, etc. Prove that the resulting sequence does not contain a pair of similar triangles. (Cf. Problem
20.2.7.4.)

Grade 9
20.2.9.1. Two rectangles on a plane intersect at eight points. Consider every other intersection point;

they are connected with line segments; these segments form a quadrilateral. Prove that the area of this
quadrilateral does not vary under translations of one of the rectangles.

20.2.9.2. Find all real solutions of the system :



1− x2
1 = x2,

1− x2
2 = x3,

. . . . . . . . . . . . . .
1− x2

98 = x99,
1− x2

99 = x1.

(Cf. Problem 20.2.10.2.)
20.2.9.3. A radio lamp has a 20-contact plug, with the contacts arranged in a circle. The plug is inserted

into a socket with 20 holes. Let the contacts in the plug and the socket be already numbered. Is it always
possible to insert the plug so that none of the contacts matches its socket? (Cf. Problem 20.2.7.2.)

20.2.9.4. Represent 1957 as the sum of 12 positive integer summands a1, a2, . . . , a12 for which the
number a1! · a2! · a3! · · · · · a12! is minimal.

20.2.9.5*. Three equal circles are tangent to each other externally and to the fourth circle internally.
Tangent lines are drawn to the circles from an arbitrary point on the fourth circle. Prove that the sum of
the lengths of two tangent lines equals the length of the third tangent. (Cf. Problem 20.2.8.2.)

Grade 10
20.2.10.1. Given quadrilateral ABCD and the directions of its sides. Inscribe a rectangle in ABCD.
20.2.10.2*. Find all real solutions of the system :




1− x2
1 = x2,

1− x2
2 = x3,

. . . . . . . . . . . . . .
1− x2

n−1 = xn,
1− x2

n = x1.
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20.2.10.3. Point G is the center of the sphere inscribed in a regular tetrahedron ABCD. Straight line
OG connecting G with a point O inside the tetrahedron intersects the faces at points A′, B′, C ′, D′. Prove
that

A′O
A′G

+
B′O
B′G

+
C ′O
C ′G

+
D′O
D′G

= 4.

(Cf. Problem 20.2.8.3.)
20.2.10.4. Prove that the number of all digits in the sequence 1, 2, 3, . . . , 10k is equal to the number

of all zeros in the sequence 1, 2, 3, . . . , 10k+1.
20.2.10.5. Given n integers a1 = 1, a2, . . . , an such that

ai ≤ ai+1 ≤ 2ai (i = 1, 2, 3, . . . , n− 1)

and whose sum is even, find whether it is possible to divide them into two groups so that the sum of numbers
in one group is equal to the sum of numbers in the other group.
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Olympiad 21 (1958)

Tour 21.1
Grade 7

21.1.7.1. In the following system : 



∗x+ ∗y + ∗z = 0,
∗x+ ∗y + ∗z = 0,
∗x+ ∗y + ∗z = 0,

two players replace the asterisks with numbers doing so in turns, one number each. Prove that the one who
starts can always get a system with a nonzero solution.

21.1.7.2. Consider two diameters AB and CD of a circle. Prove that if M is an arbitrary point on the
circle, and P and Q are its projections to these diameters, then the length of PQ does not depend on the
location of M . (See Fig. 35.)

Figure 35. (Probl. 21.1.7.2)

21.1.7.3. How many four-digit numbers from 0000 to 9999 (we complete a one-, two-, or three-digit
number to a four-digit one by writing zeros in front of it) are there such that the sum of their first two digits
is equal to the sum of their last two digits?

21.1.7.4. Given two points A and B on a plane. Construct a square with A and B on its sides and with
the least possible sum of distances of A to the vertices of the square.

21.1.7.5. In the following triangular table

0 1 2 . . . . . . . . . . . . . . . 1957 1958
1 3 5 . . . . . . . . . . . . 3915

. . . . . . . . . . . .

each number (except for those in the upper row) is equal to the sum of the two nearest numbers in the row
above. Prove that the lowest number is divisible by 1958.

Grade 8
21.1.8.1. Consider a point O inside 4ABC and three vectors of length 1 on rays OA, OB, OC. Prove

that the sum of the lengths of these vectors is < 1.
21.1.8.2. Prove that if one root of the following system with integer coefficients is not an integer, then

p1 = p2, q1 = q2: {
x2 + p1x+ q1 = 0,

x2 + p2x+ q2 = 0.
21.1.8.3. On a circular clearing of radius R grow three pines of the same diameter. The centers of

the pines’ trunks are the vertices of an equilateral triangle, each at distance R
2 from the center of the

clearing. Two men are looking for one another. They go around the clearing along its border, starting from
diametrically opposite points. They move at the same speed and in the same direction, and cannot see each
other.

Can three men see one another if they go around the clearing starting from the points situated at the
vertices of an equilateral triangle inscribed in this clearing?
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21.1.8.4. See Problem 21.1.9.3 for n = 1958.
21.1.8.5*. The length of the projections of a polygon to the OX-axis, the bisector of the first and third

coordinate angles, the OY -axis, and the bisector of the second and fourth coordinate angles are equal to 4,
3
√

2, 5 and 4
√

2, respectively. Prove that the area S of the polygon is ≤ 17.5.

Grade 9
21.1.9.1. An infinite broken line A0A1 . . . An . . . on a plane, with right angles between its segments,

begins at point A0 with coordinates x = 0, y = 1, and circumvents the origin O clockwise.
The first segment of this broken line is of length 2 and is parallel to the bisector of the fourth coordinate

angle. Each of the subsequent segments intersects one of the coordinate axes, and has an integer length
which is the least length sufficient to intersect the axis. Denote the lengths of OAn by rn; let the sum of the
lengths of the first n segments of the broken line be Sn. Prove that there exists an n for which Sn

rn
> 1958.

21.1.9.2. What is the greatest number of axes of symmetry that a figure in space might have, if the
figure is formed of three straight lines no two of which are parallel or identical?

21.1.9.3. Solve in positive integers

1− 1

2 + 1
3 + 1

4 + . . . 1
(n− 1) + 1

n

=
1

x1 + 1
x2 + 1

x3 + . . . 1
xn−1 + 1

xn

21.1.9.4. A segment of length 3n is split into three equal parts. The first and third parts are fixed.
Each of the fixed segments is split into three equal parts the first and third of which are fixed again, and so
on, until we get segments of length 1. The endpoints of all fixed segments are called fixed points. Prove that
for any integer k such that 1 ≤ k ≤ 3n there are two fixed points the distance between which is equal to k.

Grade 10
21.1.10.1*. See Problem 21.1.8.5. Prove that the area S of the polygon is ≥ 10.
21.1.10.2. Prove that 11551958 + 341958 6= n2 for any integer n.
21.1.10.3. See Problem 21.1.9.2.
21.1.10.4. On a table lies a regular 100-gon whose vertices are numbered consecutively: 1, 2, . . . , 100.

These numbers were then rewritten, in increasing order, according to the distance of the corresponding
vertex from the front edge of the table. If vertices are at the same distance from the edge, the left number is
written first, and then the right one. All possible sets of numbers corresponding to different positions of the
100-gon are written out. Calculate the sum of the numbers in the 13-th position from the left in all these
sets.

21.1.10.5* (J.Littelwood’s problem.) Of four straight lines on a plane no two are parallel and no three
meet at one point. Along each line a pedestrian walks at a constant speed. It is known that the first
pedestrian meets the second, third and fourth ones, and the second pedestrian meets the third and fourth
ones. Prove that the third pedestrian meets the fourth one.

Tour 21.2
Grade 7

21.2.7.1. Prove that on a plane it is impossible to arrange more than 4 convex polygons so that each
two of them have a common side.

21.2.7.2. There are two rows of 1’s and −1’s, each containing 1958 numbers. At each step one is allowed
to change the sign of any 11 numbers of the first row. Prove that after a finite number of steps one could
change the first row into the second one.

21.2.7.3. Each face of a cube is pasted over with two equal right triangles with a common hypotenuse,
one of them white and the other black. (See Fig. 36.) Is it possible to arrange these triangles so that the sum
of the white angles at each vertex of the cube be equal to the sum of the black angles at the same vertex?

21.2.7.4. Prove that (n!)2 > nn for n > 2.
21.2.7.5. On a piece of graph paper with squares of side 1, an m× n rectangle is drawn along the lines

of the graph. Is it possible to draw inside the rectangle, along the lines of the graph, a broken line passing
each vertex of the graph inside or on the boundary of the rectangle exactly once? If this is possible, what is
the length of the brocken line?
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Figure 36. (Probl. 21.2.7.3)

Grade 8
21.2.8.1. A polygon (not necessarily convex) is cut out of paper. Through two points on the boundary

of the polygon a straight line is drawn. The polygon is folded along this straight line and the two pieces of
paper are glued to form a new polygon. Prove that the perimeter of the new polygon does not exceed that
of the initial polygon. (See Fig. 37.)

Figure 37. (Probl. 21.2.8.1)

21.2.8.2. Prove that for any nonnegative a1 and a2 such that a1 + a2 = 1 there exist nonnegative b1
and b2 such that b1 + b2 = 1 and (1.25− a1)b1 + 3(1.25− a2)b2 > 1.

21.2.8.3. Inside ∠AOB, a point C is taken. From C perpendiculars are dropped: CD to OA and CE to
OB. From D and E, perpendiculars are also dropped: DN to OB and EM to OA. Prove that OC ⊥MN .

21.2.8.4. Prove that 11 · 22 · 33 · · · · · nn < nn(n+1)/2 for n > 1.
21.2.8.5. Let a be the greatest number of nonintersecting discs of diameter 1 whose centers are inside

a polygon M , and let b be the least number of discs of radius 1 that entirely cover M . Which is greater, a
or b?

Grade 9
21.2.9.1. See Problem 21.2.10.1 below.
21.2.9.2. From a point O draw n rays on a plane so that the sum of all angles formed by pairs of rays

(their total is 1
2n(n− 1)) is the greatest possible.

21.2.9.3. A playboard is shaped like a rhombus with an angle of 60◦. Each side of the rhombus is
divided into 9 parts. Straight lines parallel to the sides and to the smaller diagonal of the rhombus are
drawn through the division points thus splitting the playboard into triangular cells. If a chip stands in a cell,
we draw three straight lines through the center of this cell parallel to the sides and to the smaller diagonal
of the rhombus. We say that the chip wins all the cells that these three lines intersect. What is the least
number of chips needed to win all cells on the chessboard?

21.2.9.4. Let a be the least number of discs of radius 1 which completely cover a polygon M , and let b
be the greatest number of nonintersecting discs of radius 1 with centers inside M . Which is greater, a or b?

21.2.9.5. A circuit of several resistors connects clamps A and B. Each resistor has an input and an
output clamp. What is the least number of resistors needed and what should the principal circuit design be
for the circuit not to be short or open if any 9 resistors between A and B break? (A resistor is broken if it
executes a short or open circuit.)
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Grade 10
21.2.10.1. Solve in positive integers

x2y + (x+ 1)2y = (x+ 2)2y.

21.2.10.2. In a polygon, there are points A and B such that the length of any broken line connecting
them and passing inside or along the boundary of the polygon is > 1. Prove that the perimeter of the
polygon is > 2.

21.2.10.3. A school curriculum has 2n subjects. All students get only A’s and B’s. We will say for the
sake of argument that one student is better than another if (s)he is not worse than the other in all subjects
and better in some subjects. Suppose that no two students get the same grades and it is impossible to say
which of any two students is better. Prove that the number of students in this school does not exceed

(2n
n

)
.

21.2.10.4. The lengths of a parallelogram’s sides are equal to a and b. Find the ratio of the volumes of
bodies obtained by rotating the parallelogram around side a and around side b.

21.2.10.5. We are given n cards with numbers written on them, one number on each side: 0 and 1 on
the 1-st, 1 and 2 on the 2-nd, etc., n− 1 and n on the n-th card. One person takes several cards and shows
to his/her partner one side of these cards. Indicate all the cases in which the second person can determine
the number written on the other side of the last card shown to him.

Olympiad 22 (1959)

Tour 22.1
Grade 7

22.1.7.1. Let a and b be integers. Let us fill in two columns as follows. Write a and b in the first row.
In the second row write a number a1 equal to a/2 if a is even and (a− 1)/2 if a is odd and b1 = 2b. In the
third row write a number a2 equal to a1/2 if a1 is even and (a1 − 1)/2 if a1 is odd and b2 = 4b. Continue
until you get a 1 in the left column.

Prove that the sum of the bi for which ai is odd is equal to ab.

22.1.7.2. Prove that 221959 − 1 is divisible by 3.
22.1.7.3*. Is it possible to arrange in a sequence all three-digit numbers that do not end in zeros so

that the last digit of each number is equal to the first digit of the number following it?
22.1.7.4. How should a rook move on a chessboard to pass each square once and with the least number

of turning points?
22.1.7.5. Given a square of side 1, find the set of points the sum of whose distances to the sides of this

square (or their extensions) equals 4.

Grade 8
22.1.8.1. Consider two barrels of sufficient capacity. Find if it is possible to pour exactly 1 liter from

one barrel into the other using two containers that can hold 2−√2 and
√

2 liters?
22.1.8.2. On a piece of paper, write figures 0 to 9. Observe that if we turn the paper through 180◦ the

0’s, 1’s (written as a vertical line segment, not as in the typed texts) and 8’s turn into themselves, the 6’s
and 9’s interchange, and the other figures become meaningless.

How many 9-digit numbers are there which turn into themselves when a piece of paper on which they
are written is turned by 180◦?

22.1.8.3. Consider a convex quadrangle ABCD. Denote the midpoints of AB and CD by K and M ,
respectively; denote the intersection point of AM and DK by O and that of BM and CK by P . Prove that
the area of quadrangle MOKP is equal to the sum of the areas of 4BPC and 4AOD.

22.1.8.4. See Problem 22.1.7.4.
22.1.8.5. Two circles with centers at O1 and O2 do not intersect. Let a1 and a2 be the inner tangents

and a3 and a4 the outer tangents to these circles. Further, let a5 and a6 be the tangents to the circle with
center at O1 drawn from O2; let a7 and a8 be the tangents to the circle with center at O2 drawn from O1.
Denote the intersection point of a1 with a2 by O.

Prove that it is possible to draw two circles with centers at O so that the first one is tangent to a3 and
a4 and the second one is tangent to a5, a6, a7, a8, and so that the radius of the second circle is half that of
the first one.
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Grade 9
22.1.9.1. Consider 1959 positive numbers a1, a2, . . . , a1959 whose sum is equal to 1. Consider all different

combinations (subsets) of 1 000 of these numbers. Two combinations are assumed to be identical if they
differ only in the order of their elements. For each combination we formed the product of its elements. Prove
that the sum of all these products is < 1.

22.1.9.2. See Problem 22.1.8.2.

22.1.9.3*. Given a circle and two points. Construct a circle passing through the given points and
intercepting a chord of given length on the given circle.

22.1.9.4. Consider a sheet of graph paper with squares of side 1, let pk be the number of all broken lines
of length k beginning at a fixed known node O of the graph (all broken lines are constituted by segments of
the graph). Prove that pk < 2 · 3k for any k.

22.1.9.5*. Prove that there is no tetrahedron such that each its edge is a leg of an obtuse planar angle.

Grade 10
22.1.10.1. Prove that there are no integers x, y, z such that xk + yk = zk for an integer k > 0 provided

z > 0, 0 < x < k, 0 < y < k.

22.1.10.2. See Problem 22.1.8.3.

22.1.10.3. Can there be a tetrahedron each edge of which is a side of an obtuse planar angle? (Cf.
Problem 22.1.9.5.)

22.1.10.4. In a square N ×N table, the numbers 1 to N2 are written in the following way: 1 can stand
at any place, 2 can occupy the row with the same index as that of the column containing 1, number 3 can
occupy the row with the same number as that of the column containing 2, etc. What is the difference between
the sum of the numbers in the row containing 1 and the sum of the numbers in the column containing N2?

22.1.10.5. Consider a sequence a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ . . . of positive numbers such that

a1 =
1
2k

; a1 + a2 + · · ·+ an + · · · = 1.

Prove that there are k numbers in the sequence such that the least of these k number is greater than half
the greatest.

Tour 22.2
Grade 7

22.2.7.1. For a1 > a2 > · · · > an and b1 > b2 > · · · > bn prove that

a1b1 + a2b2 + · · ·+ anbn > a1bn + a2bn−1 + · · ·+ anb1.

22.2.7.2. Given 4ABC, find a point whose reflection through any side of the triangle lies on the
circumscribed circle.

22.2.7.3. What should 999 999 999 be multiplied by to get a number whose decimal expression contains
only 1’s?

22.2.7.4. Prove that the digits of any six-digit number can be permuted so that the difference between
the sum of the first and the last three digits of the new number is less than 10.

22.2.7.5. Consider n numbers x1, . . . , xn each equal to 1 or −1. Prove that if

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 = 0,

then n is divisible by 4.

Grade 8
22.2.8.1. See Problem 22.2.7.5. This problem can be reformulated in a “romantic” way: some of n

knights sitting at a round table are enemies. The number of knights whose left neighbors are their friends is

equal to the number of knights whose left neighbors are their enemies. Prove that n
... 4.
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22.2.8.2*. Consider 12 numbers a1, . . . , a12 such that
a2(a1 − a2 + a3) < 0,

a3(a2 − a3 + a4) < 0,
. . . . . . . . . . . . . . . . . . . . . . . .

a11(a10 − a11 + a12) < 0.

Prove that at least three of these numbers are positive and at least three are negative.
22.2.8.3. Given 4ABC and its escribed circles O1, O2, O3. For each pair of these circles we draw the

second common outer tangent (one such tangent is already drawn: it is a side of 4ABC). The three outer
tangents form a triangle. Find its angles if the angles of 4ABC are known.

22.2.8.4. Given two intersecting line segments AB and CD of length 1. Prove that at least one of the
sides of quadrilateral ABCD is not less than

√
2/2.

22.2.8.5. Prove that a knight cannot pass each square of a 4× 4 chessboard exactly once.

Grade 9
22.2.9.1. Given 100 numbers x1, . . . , x100 whose sum is equal to 1 and such that |xk+1 − xk| < 1

50 for
all k. Prove that of these 100 numbers, 50 numbers may be selected so that their sum would differ from 1

2
by not more than 1

100 .
22.2.9.2. n segments of length 1 meet at one point. Prove that at least one side of the 2n-gon whose

vertices are the endpoints of the given segments is not shorter than a side of a regular 2n-gon inscribed in a
circle of diameter 1.

22.2.9.3. Prove that a tetrahedron has not more than one vertex such that the sum of any two planar
angles at this vertex is greater than 180◦.

22.2.9.4. Prove that there are infinitely many integers that cannot be expressed as the sum of three
cubes.

22.2.9.5. Two white knights stand at the upper corners of a 3× 3 chessboard, and two black knights at
the lower corners. In one move any knight can go to any unoccupied place in accordance with chess rules.
We want to shift the white knights to the lower corners and the black knights to the upper corners. Prove
that this requires at least 16 moves.

Grade 10
22.2.10.1. See Problem 22.2.9.4.
22.2.10.2. ABCD is a spatial quadrilateral. Points K1 and K2 divide AB and DC, respectively,

into segments with ratio α; and K3 and K4 divide BC and AD, respectively, into segments with ratio
β. Prove that K1K2 and K3K4 intersect. (For the position of the segments α and β see Fig. 38, where
AK1
K1B

= DK2
K2C

= α, BK3
K3C

= AK4
K4D

= β.)

Figure 38. (Probl. 22.2.10.2) Figure 39. (Probl. 23.1.7.4)

22.2.10.3. Given several intersecting discs covering an area of 1 on a plane, prove that it is possible to
select from these discs several nonintersecting discs covering an area of not less than 1

9 .
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22.2.10.4. Given n complex numbers c1, . . . , cn that being represented as points on a complex line are
the vertices of a convex n-gon. Prove that if

1
z − c1 +

1
z − c2 + · · ·+ 1

z − cn = 0,

then the point z is inside this n-gon.
22.2.10.5. Two discs of different diameters are divided into 2n equal sectors each, and each sector is

painted white or black so that each disc has n white sectors and n black sectors. If the two discs are fixed
by a pin piercing their centers, it turns out that the circle bounding the smaller disc is painted twice: on
the inside (as part of the small disc) and on the outside (as part of the large disc). Thus, some parts of the
circle are painted different colors, and the other parts are of the same color on both sides.

Prove that it is possible to rotate the smaller disc so that the parts painted differently will constitute
no less than half of the circle’s length.

Olympiad 23 (1960)

Tour 23.1
Grade 7

23.1.7.1. Indicate all amounts of roubles that may be changed with the help of both an even and an
odd number of bills.

Remark. We assume that, as it was in reality in 1960, the bills are of denominations of 1, 3, 5, 10, 25,
50 and 100 roubles.

23.1.7.2. Three equal circles with centers O1, O2, O3 intersect at a given point, let A1, A2, A3 be the
other intersection points. Prove that 4O1O2O3 = 4A1A2A3.

23.1.7.3. 30 undergraduates from 1-st through 5-th year took part in compiling 40 problems for an
Olympiad. Any 2 students of the same year brought about the same number of problems. Any two under-
graduates of different years suggested distinct number of problems. How many undergraduates suggested
one problem each?

23.1.7.4. Two circles with centers O1 and O2 intersect at points M and N . Line O1M intersects the
first circle at A1, and the second one at A2. Line O2M intersects the first circle at B1, and the second one
at B2. Prove that A1B1, A2B2, and MN intersect at one point. (See Fig. 39.)

23.1.7.5. Prove that an integer n cannot have more than 2
√
n divisors.

Grade 8
23.1.8.1. Prove that a number whose decimal expression contains 300 digits 1, all other digits being

zeros, is not a perfect square.
23.1.8.2. In a tournament, each chessplayer got half of his (her) final score in matches with participants

who occupied three last places. How many persons participated in the tournament?
23.1.8.3. Draw a straight line through a given vertex A of a convex quadrilateral ABCD so that it

divides ABCD into parts of equal area.
23.1.8.4. There are given segments AB, CD and a point O such that no three of the points A, B, C,

D, O are on one straight line. The endpoint of a segment is marked if the straight line passing through it
and O does not intersect another segment. How many marked endpoints are there?

23.1.8.5*. Prove that there are infinitely many positive integers not representable as p + n2k for any
prime p and positive integers n and k.

Grade 9
23.1.9.1. Prove that any proper fraction can be represented as a (finite) sum of the reciprocals of distinct

integers.
23.1.9.2. See Problem 23.1.8.5.
23.1.9.3. Given a convex polygon and a point O inside it such that any straight line through O divides

the polygon’s area in halves. Prove that the polygon is symmetric with respect to O.
23.1.9.4. iven a circle and a point inside it. Find the locus of fourth vertices of rectangles, two of whose

vertices lie on the given circle and a third vertex is the given point.
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Grade 10
23.1.10.1. Two equal equilateral triangular laminas are arranged in space on parallel planes P1 and P2

so that the segment connecting their centers is perpendicular to their planes. Find the locus of midpoints
of all segments connecting points of one lamina with the points of the other.

23.1.10.2. Prove that if the fraction an + bn

a + b is an integer for positive integers a, b, n, and both the
numerator and the denominator of this fraction are divisible by n, then so is the fraction itself.

23.1.10.3. See Problem 23.1.9.4.
23.1.10.4. In the decimal expression of an integer A all digits except the first and the last are zeros;

the first and the last are not zeros; and the number of digits is not less than three. Prove that A is not a
perfect square.

23.1.10.5. Given numbers a1, a2, . . . , ak such that an
1 + an

2 + · · · + an
k = 0 for any odd n, prove that

nonzero of the numbers a1, . . . , ak can be combined in pairs consisting of two opposite numbers, i.e., a and
−a.

Tour 23.2
Grade 7

23.2.7.1. Given four points, A, B, C, D on a plane. Find a point O such that the sum of the distances
from O to the given points is the least possible.

23.2.7.2. Prove that a trapezoid can be constructed from the sides of any quadrilateral.
23.2.7.3. Prove that any nonselfintersecting pentagon is situated on one side of at least one of its edges.
23.2.7.4. One year a Sunday never fell on a certain date in any month. Find this date. (A date here is

a number n, 1 ≤ n ≤ 31).

Grade 8
23.2.8.1. For what smallest n can n points be arranged on a plane so that every 3 of them are the

vertices of a right triangle?
23.2.8.2. On an infinite chessboard, denote by (a, b) the square at the intersection of the a-th row and

the b-th column. A piece may move from square (a, b) to any of the 8 squares (a±m, b±n) or (a±n, b±m),
where m and n are fixed numbers. We know that the piece returns to its starting point after x moves. Prove
that x is even.

23.2.8.3. See Problem 23.2.7.2.
23.2.8.4*. A snail crawls along a straight line, always forward, at a variable speed. Several observers

in succession follow its movements during 6 minutes. Each person begins to observe before the preceding
observer finishes the observation and observes the snail for exactly one minute. Each observer noticed that
during his (her) minute of observation the snail has crawled exactly 1 meter. Prove that during 6 minutes
the snail could have crawled at most 10 meters.

23.2.8.5. Given pentagon ABCDE in which AB = BC = CD = DE and ∠B = ∠D = 90◦. Prove that
a plane may be tiled with such pentagons without gaps or overlaps.

Grade 9
23.2.9.1. We are given m points; each of them are connected with line segments to l points. What

values can l take?
23.2.9.2. We are given an arbitrary centrally-symmetric hexagon on whose sides equilateral triangles

are constructed outward. Prove that the midpoints of the segments connecting the vertices of neighboring
triangles are vertices of a regular hexagon.

23.2.9.3. Prove that on any rectangular chessboard 4 squares wide a knight cannot pass each square
exactly once and return in the last move to its starting position.

23.2.9.4. Find the locus of the centers of all rectangles circumscribed around a given acute triangle.
23.2.9.5*. In a square of side 100, N circles of radius 1 are arranged so that any segment of length 10

lying inside the square intersects at least one circle. Prove that N ≥ 400.

Grade 10
23.2.10.1. The number A is divisible by 2, 3, . . . , 9. Prove that if 2A is represented as the sum

2A = a1 + a2 + · · ·+ ak of positive integers each less than 10, then it is possible to select from a1, a2, . . . , ak

certain numbers so that the sum of numbers selected is equal to A.
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23.2.10.2. A 6n-digit number is divisible by 7. The last digit is moved to the beginning of the decimal
expression. Prove that the number thus obtained is also divisible by 7.

23.2.10.3. At a gathering of n people, every two persons have two common acquaintances, and every
two acquaintances have no common acquaintances. Prove that each of persons present has the same number
of acquaintances.

23.2.10.4. See Problem 23.2.9.4.
23.2.10.5. A snail has to crawl 2n units along the lines of a piece of graph paper, starting and finishing

at a given crossing. Prove that the number of possible routes the snail can take is equal to
(2n

n

)2
.

Olympiad 24 (1961)

Tour 24.1
Grade 7

24.1.7.1. See Problem 24.1.9.3 below for an even n.
24.1.7.2. Given a 3-digit number abc. We take the number cba, and subtract the smaller from the

greater to get the number a1b1c1; we perform the same operation with it, and so on (the case a1 = 0 is
allowed). Prove that at some step we get either 495 or 0.

24.1.7.3. Given an acute triangle 4A0B0C0 let points A1, B1, C1 be the centers of squares constructed
on sides B0C0, C0A0, A0B0 outwards. We take triangle 4A1B1C1, perform the same operation with it and
get 4A2B2C2, etc. Prove that 4AnBnCn and 4An+1Bn+1Cn+1 intersect in exactly 6 points.

24.1.7.4. Consider 100 points on a plane such that (1) the distance between any two of them does not
exceed 1 and (2) if A, B, C are any three of these points, then 4ABC is obtuse. Prove that there is a circle
of radius 1/2 such that all given points are either inside it or on it.

24.1.7.5*. On a chessboard, two squares of the same color are selected. Prove that a rook can traverse
all squares, starting from one of those selected, and visiting each square exactly once except for the other
selected square which the rook must visit twice.

Grade 8
24.1.8.1. Consider 4ABC and a point O, denote by M1, M2, M3 the centers of mass of 4OAB,

4OBC, 4OCA, respectively. Prove that SM1M2M3 = 1
9SABC .

24.1.8.2. One of two players selects a set of one-digit numbers x1, . . . , xn (either all positive or all
negative). The second player can ask what is the value of a1x1 + a2x2 + · · · + anxn, where a1, . . . , an are
any numbers the second player wishes. What is the least number of questions the second player can use to
guess what is the selected set of x’s?

24.1.8.3. See Problem 24.1.7.3.
24.1.8.4. Prove that a rook can pass all squares of a rectangular chessboard visiting each square exactly

once and return to the first square only if the number of squares is even.
24.1.8.5. A set of consequtive positive integers a, a + 1, . . . , a + k is called a segment (of the natural

series). Two segments of length 1961 are written one below the other. Prove that it is possible to arrange the
numbers of each segment so that by adding digits which stand one below the other we get another segment.

Grade 9
24.1.9.1. See Problem 24.1.7.1.
24.1.9.2. See Problem 24.1.8.2.
24.1.9.3. Prove that it is possible to arrange the numbers from 1 to n2 in an n × n table so that the

sums of numbers in each column are equal.
24.1.9.4. See Problem 24.1.10.3 below assuming that k is divisible by 4.
24.1.9.5. On a plane there are n points such that if A, B, C are any three of them, no other point is

inside 4ABC. Prove that these points may be numbered so that the polygon A1A2 . . . An is convex.

Grade 10
24.1.10.1. Given the Fibonacci sequence 1, 1, 2, 3, 5, . . . , uk, . . . Prove that u5k is divisible by 5 for

any k = 1, 2, 3, . . . .
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24.1.10.2. On a plane several strips of different width are drawn so that no two of them are parallel.
How should the strips be transported parallel with themselves to maximize the area of their intersection F?
(See Fig. 40.)

Figure 40. (Probl. 24.1.10.2) Figure 41. (Probl. 24.2.7.1)

24.1.10.3. k persons took a bus without a conductor. They had only coins of denomination 10, 15, or
20 kopecks. Each person paid his/her fare and got the change from other passengers. Prove that the least
number of coins needed for this operation is equal to k +

[
k + 3

4

]
.

Remark. Recall that the machines that sold tickets in the public transport in Moscow were self service.
They had receptacles (cash-boxes) for any amount of money but could not give any change. The bus fare
was 5 kopecks. So if you had just a 10 kopeck coin you had to ask someone in need of a ticket to give you
his/her 5 kopecks, insert your 10 kopecks and take 2 tickets. So the passangers had to help each other or
risk a fine1.

24.1.10.4. A circle S and a point O outside it are both on the same plane. Consider an arbitrary sphere
through S and the cone with vertex at O tangent to this sphere. Find the locus of the centers of all circles
along which such cones are tangent to such spheres.

24.1.10.5. Given n nonzero complex numbers zi, i = 1, . . . , n, such that z1 + z2 + · · · + zn = 0, prove
that among them there are two numbers with the difference between their arguments ≥ 120◦.

Tour 24.2
Grade 7

24.2.7.1. The sides of an arbitrary convex polygon are painted on the outside. Consider several diago-
nals; let each of them be similarly painted on one side. Prove that at least one of the polygons into which
the initial one is divided by the diagonals is painted completely on the outside. (We allow the paint to leak
inside a polygon at its vertices.) See Fig. 41.

24.2.7.2. On sides AB, BC, CD and AD of square ABCD points P , Q, R, S, respectively, are selected
so that PQRS is a rectangle. Prove that either PQRS is a square or its sides are parallel to the respective
diagonals of ABCD.

24.2.7.3. Prove that among any 39 consecutive positive integers there is at least one the sum of whose
digits is divisible by 11.

24.2.7.4. Given a 4 × 4 table. Show that it is possible to arrange 7 asterisks in the table’s squares so
that if we strike out any two rows and any two columns the remaining squares still contain at least one
asterisk. Prove that if there are fewer than 7 asterisks it is always possible to strike out two rows and two
columns with no asterisks remaining.

24.2.7.5. Prove that the following system has no integer solutions for a, b, c, d



abcd− a = 1961,
abcd− b = 961,
abcd− c = 61,
abcd− d = 1.

1One could actually take as many tickets as there were in the machine; it was only your conscious and, perhaps, the
presence of other passangers, if any, that prevented you from abuse. Miraculously, this seldom happened.
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Grade 8
24.2.8.1. Given a figure of 16 segments, see Fig. 42. Prove that it is impossible to draw a broken line

intersecting each of the segments exactly once. The broken line may be open and selfintersecting but its
vertices may not lie on the segments and its links may not pass through the common endpoints of the given
segments.

Figure 42. (Probl. 24.2.8.1)

24.2.8.2*. The length of a diagonal of a rectangle is equal to d. The rectangle’s vertices are the centers
of 4 circles of radii r1, r2, r3, r4 such that r1 + r3 = r2 + r4 < d. Two pairs of outer tangents to circles 1, 3
and 2, 4, are drawn. Prove that a circle can be inscribed in the quadrilateral formed by these four tangents.
(See Fig. 43.)

Figure 43. (Probl. 24.2.8.2)

24.2.8.3. The sum of digits of integers k and k+ l is divisible by 11 and there is no number with similar
properties between them. What is the greatest value of l? (Cf. Problem 24.2.7.3.)

24.2.8.4. See Problem 24.2.7.4.
24.2.8.5. Given four numbers, a, b, c, d, we construct another four numbers: ab, bc, cd, da (each number

is multiplied by the next one and the fourth number is multiplied by the first one). From these four numbers
a third foursome is obtained by the same rule, etc. Prove that in the resulting sequence of foursomes we
never encounter the initial one except for the case a = b = c = d = 1.

Grade 9
24.2.9.1. Points A and B move uniformly with equal angle velocities clockwise along circles O1 and O2,

respectively. Prove that vertex C of equilateral triangle 4ABC also moves uniformly along a circle.
24.2.9.2. An m×n table is filled with certain numbers. It is allowed to simultaneously change the sign

of all numbers in a column or a row. Prove that by applying this operation several times, any given table
may be altered so that the sum of the numbers in any one of its columns or rows will be nonnegative.

24.2.9.3. n points are connected by segments so that each point is connected to any other by a “route”,
and no two points are connected by more than one such “route”. Prove that there are n − 1 segments
altogether.

24.2.9.4. a, b, p are integers. Prove that there exist relatively prime integers k, l such that ak + bl is
divisible by p.



70 MOSCOW MATHEMATICAL OLYMPIADS 1 – 59

24.2.9.5. Nick and Pete divide between themselves 2n+ 1 nuts, n ≥ 2, and each tries to get the greater
share, naturally. According to The Rule there are three ways to divide the nuts. Each way consists of three
steps and the 1-st and 2-nd steps are common for all three ways.

1-st step: Pete divides all nuts into two piles, each containing no less than two nuts.
2-nd step: Nick divides both piles into two, each new pile containing no less than one nut.
3-rd step: Nick sticks to either of the following methods:

a) Nick takes either the biggest and the smallest pile, or
b) Nick takes both medium-sized piles, or
c) Nick choses either the biggest and the smallest or the medium-sized piles, but pays Pete one nut for the
choice.

Find the most profitable and the least profitable of methods a) – c) for Nick to divide the nuts.

Grade 10
24.2.10.1. Prove that for any three infinite sequences of positive integers

a1, a2, . . . , an, . . . ;
b1, b2, . . . , bn, . . . ;
c1, c2, . . . , cn, . . . .

there exist p and q such that ap ≥ aq, bp ≥ bq, cp ≥ cq.
24.2.10.2. 120 squares of side 1 are tossed onto a 20× 25 rectangle. Prove that a disc of diameter 1 can

be placed in the rectangle so that the disc does not intersect any of the squares.
24.2.10.3. See Problem 24.2.9.2.
24.2.10.4. On a plane, the distance from a fixed point P to two vertices, A and B, of an equilateral

4ABC is 2 and 3 units, respectively. Find the maximal possible length of PC.
24.2.10.5. From an arbitrary sequence of 2k numbers 1 and −1 we get a new sequence by the following

operation: each number is multiplied by the one following it, and the last 2k-th number is multiplied by the
1-st one. We perform the same operation with the sequence obtained, and so on. Prove that eventually we
get a sequence consisting entirely of 1’s.

Olympiad 25 (1962)

Tour 25.1
Grade 7

25.1.7.1. Given a straight line l perpendicular to and intersecting segment AB. For any point M on l
we can find a point N such that ∠NAB = 2∠MAB and ∠NBA = 2∠MBA. Prove that the absolute value
|AN −BN | does not depend on M . (See Fig. 44.)

Figure 44. (Probl. 25.1.7.1)

25.1.7.2. We reflect an equilateral triangle with one marked side through one of its sides. Then we
similarly reflect the resulting triangle, etc., until at a certain step the triangle returns to its initial position.
Prove that the marked side also returns to its initial position.

25.1.7.3. Let a, b, c, d be the sides of a quadrilateral that is not a rhombus. Prove that from the
segments a, b, c, d one can construct a self-intersecting quadrilateral.
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25.1.7.4. Denote by S(a) the sum of digits of a number a. Prove that if S(a) = S(2a), then a is divisible
by 9.

25.1.7.5. On each side of n given cards one of the numbers 1, 2, . . . , n is written so that each number
occurs exactly twice. Prove that the cards may be arranged on a table so that all numbers 1, 2, . . . , n face
upward.

Grade 8
25.1.8.1. On sides AB, BC, CA of an equilateral triangle 4ABC find points X, Y , Z, respectively, so

that the area of the triangle formed by lines CX, BZ, AY is one-fourth of the area of 4ABC and so that
AX

XB
=
BY

Y C
=
CZ

ZA
.

25.1.8.2. See Problem 25.1.7.2.
25.1.8.3. Prove that for any integer d there exist integers m and n such that

d =
n− 2m+ 1
m2 − n .

25.1.8.4. See Problem 25.1.7.4.
25.1.8.5. See Problem 25.1.7.5.

Grade 9
25.1.9.1. Given two intersecting segments AA1 and BB1 on which lie points M and N , respectively, so

that AM = BN . Find positions of M and N for which the length of MN is the shortest. (Cf. Problem
25.1.9.2.7-8.3).

25.1.9.2. A chessman that crosses n squares in one move diagonally and 1 square up (or the other way
round) is called a Boo. A Boo stands on a square of an infinite chessboard. What n is required for the Boo
to reach any given square? For what n this is impossible?

25.1.9.3. See Problem 25.1.7.4.
25.1.9.4. Given the system of equations:





x1x2x3 . . . x1961x1962 = 1,
x1 − x2x3 . . . x1961x1962 = 1,
x1x2 − x3 . . . x1961x1962 = 1,

x1x2x3 . . . x1961 − x1962 = 1,

find what values x25 can take.
25.1.9.5. Prove that in a rectangle of area 1 nonintersecting circles can be arranged so that the sum of

their radii is equal to 1962.

Grade 10
25.1.10.1. See Problem 25.1.9.1, the segments being replaced with intersecting rays. (See Fig. 45.)

Figure 45. (Probl. 25.1.10.1) Figure 46. (Probl. 25.1.10.2)

25.1.10.2. The sides of a square are the bases of equal acute isosceles triangles constructed outward.
Prove that the figure obtained cannot be divided into parallelograms. (See Fig. 46.)
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25.1.10.3. Prove that any positive integer can be represented as the sum of several distinct terms of
the Fibonacci sequence 1, 2, 3, 5, 8, 13, . . . .

25.1.10.4. See Problem 25.1.9.4.

25.1.10.5. See Problem 25.1.7.5.

Tour 25.2
Grade 7

25.2.7.1. A ball rests at the side of a billiard table shaped in the form of a regular 2n-gon without
pockets. How should the ball be shot so that after reflections through all sides1 (except the initial one)
exactly once it returns to the same point? Prove that for the pathes that consequtively reflect themselves
through neighboring sides the length of the ball’s path does not depend on the starting point.

25.2.7.2*. Let 4ABC be an isosceles triangle, AB = BC, BH its height, M the midpoint of AB, and
K the other intersection point of BH with the circle drawn through B, M and C. Prove that BK = 3R/2,
where R is the radius of the circle circumscribed around 4ABC.

25.2.7.3. An L-shaped figure (see Fig. 47) is constructed of three squares with side 1. Prove that a) it
is impossible to split a rectangle of size 1961 × 1963 into such figures but b) it is possible to do so with a
rectangle of size 1963× 1965.

Figure 47. (Probl. 25.2.7.3) Figure 48. (Probl. 25.2.8.5)

25.2.7.4. Prove that the number 100...01 with 1961 zeros between the 1’s is not a prime.

25.2.7.5. Given 25 points on a plane such that from any three points we can choose two points that are
less than 1 unit of length apart. Prove that 13 of the given points lie on a unit disc.

Grade 8
25.2.8.1. Several diagonals in a convex polygon satisfy the following condition: no two of them intersect

except at an endpoint identical with a vertex. Prove that no diagonal come out of at least 2 vertices of this
polygon.

25.2.8.2. How should one arrange the numbers 1, 2, . . . , 1962 in a sequence a1, a2, . . . , a1962 in order to
obtain the greatest possible value of the sum

|a1 − a2|+ |a2 − a3|+ · · ·+ |a1961 − a1962|+ |a1962 − a1| ?
25.2.8.3. An irregular n-gon is inscribed in a circle. After a rotation of the circle around its center

through an angle of α 6= 2π the n-gon coincides with itself. Prove that n is not prime.

25.2.8.4*. From the numbers x1, x2, x3, x4, x5 ten sums are composed each having as summands two of
these numbers. Denote the sums by a1, a2, . . . , a10; we do not know what summands constitute them. Prove
that given a1, a2, . . . , a10, one can find x1, x2, . . . , x5.

25.2.8.5. Two circles, O1 and O2, intersect at M and P . Denote by MA the chord of O1 tangent to
O2 at M , and by MB the chord of O2 tangent to O1 at M . On line MP , segment PH equal to MP is
constructed. Prove that quadrilateral MAHB can be inscribed in a circle. (See Fig. 48.)

1The words in italics are added to the original formulation to make the problem correct.
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Grade 9
25.2.9.1. During every period of 7 consecutive days throughout the school year a student must solve

exactly 25 problems. The time required to solve any (one) problem does not vary during a day but does
vary during the year according to a Rule known to the student. This time is always less than 45 minutes.
The student wants to spend as little time as possible on solving all problems. Prove that to this end (s)he
can choose a certain day every week and solve all 25 problems during this day.

Remark. We disregard here the fact that unless the student is looking for trouble at school and at
home (s)he can be engaged in solving the problems only on Sundays, for about 18 hours in a row.

25.2.9.2. See Problem 25.2.8.2, where 25 arbitrary different numbers replace 1, 2, . . . , 1962.

25.2.9.3. The sides of a convex polygon whose perimeter is equal to 12 are moved a distance of d = 1
outward and their extensions form a new polygon. Prove that the area of the new polygon is at least 15
square units greater than the area of the original polygon.

25.2.9.4. See Problem 25.2.8.4.

25.2.9.5. Given 2n finite sequences of 0’s and 1’s such that none of them is the beginning of another,
prove that the sum of the lengths of these sequences is not less than n2n.

Grade 10
25.2.10.1. A point C is fixed on a given straight line l passing through the center O of a given circle.

Points A and A′ lie on the circle on one side of l, so that the angles formed by lines AC and A′C with l are
equal. Lines AA′ and l meet at B. Prove that the location of B does not depend on that of A. (See Fig. 49.)

Figure 49. (Probl. 25.2.10.1) Figure 50. (Probl. 25.2.10.4)

25.2.10.2. See Problem 25.2.9.2.

25.2.10.3. See Problem 25.2.9.3.

25.2.10.4. How should a right parallelepiped be placed in space so that the area of its projections to
the horizontal plane is the greatest possible? (See Fig. 50.)

25.2.10.5. In a chess tournament, each participant played one game with each other. Prove that the
participants may be so numbered, that none of them loses to the one with the next number.

Olympiad 26 (1963)

Tour 26.1
Grade 7

26.1.7.1. From vertex B of an arbitrary 4ABC, straight lines BM and BN are drawn outside the
triangle so that ∠ABM = ∠CBN . Points A′ and C ′ are symmetric to A and C through BM and BN ,
respectively. Prove that AC ′ = A′C. (See Fig. 51.)

26.1.7.2. Let a, b, c be three numbers such that a+ b+ c = 0. Prove that ab+ bc+ ca ≤ 0.
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Figure 51. (Probl. 26.1.7.1)

26.1.7.3. We have a 4 × 100 sheet of graph paper. The Rule allows to divide it into 200 rectangular
cards of size 1× 2 each consisting of 2 cells of the paper and write 1 on one cell of the card and −1 on the
other. Is it possible to ensure that the products of the numbers in each column and each row of the table
obtained are positive? (Cf. Problem 26.1.8.5 below.)

26.1.7.4. See Problem 26.1.8.4 below.
26.1.7.5. Is it possible to draw a straight line on a 20×30 piece of graph paper so that it would intersect

50 squares? (Cf. Problem 26.1.10.3 below.)

Grade 8
26.1.8.1. Let a1, . . . , an be numbers such that a1 + a2 + · · ·+ an = 0. Let S be the sum of all products

aiaj for i 6= j. Prove that S ≤ 0. (Cf. Problem 26.1.7.2.)
26.1.8.2. Given a convex quadrilateral ABCD of area S, a point M inside it and points E, F , G, H

symmetric to M through the midpoints of the sides of the quadrilateral ABCD, respectively, find the area
of quadrilateral EFGH. (See Fig. 52.)

Figure 52. (Probl. 26.1.8.2) Figure 53. (Probl. 26.1.9.5)

26.1.8.3. Solve in integers the equation
xy

z
+
xz

y
+
yz

x
= 3.

26.1.8.4. Given 7 lines on a plane, no two of which are parallel, prove that two of them meet at an
angle < 26◦.

26.1.8.5. A 5× n piece of graph paper is divided into rectangular 1× 2 cards of two cells of the paper
each. We write a 1 on one cell of the card and a −1 on the other cell. It is known that the product of the
numbers in each row and each column of the resulting table is positive. For which n this is possible? (Cf.
Problem 26.17.3.)

Grade 9
26.1.9.1. The first term and the difference of an arithmetic progression are integers. Prove that there

exists a term in this progression whose decimal expression contains figure 9.
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26.1.9.2. See Problem 26.1.8.5.
26.1.9.3. Let a, b, c be some positive numbers. Prove that

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

26.1.9.4. Prove that of any four points on a plane, no three of which are on the same line, three points
may be selected so that the triangle with vertices at these points has at least one angle ≤ 45◦. (Cf. Problem
26.1.10.2 below.)

26.1.9.5. Is it possible to inscribe in a rectangle with the ratio of sides 9 : 16 another rectangle, with
the ratio of sides 4 : 7, so that on each side of the first rectangle there is a vertex of the second one? (See
Fig. 53.)

Grade 10
26.1.10.1. See Problem 26.1.9.1.
26.1.10.2. Prove that of any six points in a plane, no three of which are on the same line, three points

may be chosen so that the triangle with vertices at these points has at least one angle that is not greater
than 30◦.

26.1.10.3. What is the greatest number of squares that a line drawn on an m× n piece of graph paper
can intersect?

26.1.10.4. Given numbers a, b, c such that abc > 0 and a+ b+ c > 0, prove that an + bn + cn > 0 for
any positive integer n.

26.1.10.5. Given an arbitrary 4ABC, find the locus of points M such that the perpendiculars to lines
AM , BM , CM dropped from points A, B, C, respectively, meet at one point.

Grade 11
26.1.11.1. Prove that x+ y + z > xyz if x, y, z > 0 and

arctanx+ arctan y + arctan z < π.

26.1.11.2. Consider a system of 25 distinct segments with a common endpoint at point A and other
endpoints lying on a line l not passing through A. Prove that there does not exist a closed 25-angled broken
line each of whose segments is parallel and equal to one of the segments from the system considered.

26.1.11.3. See Problem 26.1.10.5.
26.1.11.4. Prove that the sum of all possible 7-digit numbers in whose decimal expression each of the

figures 1, 2, 3, 4, 5, 6, 7 is used exactly once is divisible by 9.
26.1.11.5. Each edge of a regular tetrahedron is divided into three equal parts. Through each division

point two planes are drawn parallel to the two faces of the tetrahedron that do not pass through this point.
Into how many parts do these planes divide the tetrahedron?

Tour 26.2
Grade 7

26.2.7.1. A factory produces rattles shaped in the form of a ring with 3 red and 7 blue spherical beads
on it. Two rattles are said to be of the same type if one can be obtained from the other one by moving
a bead along the ring or by flipping the ring over in space. How many different types of rattles can be
manufactured?

26.2.7.2. See Problem 26.2.9.2.
26.2.7.3. Given 4ABC. Consider straight line intersecting sides AB and AC of the triangle so that

the distance from the line to point A is equal to the sum of the distances from the line to points B and C.
Prove that all such lines pass through one point.

26.2.7.4. What greatest number of elements can be selected from the set of numbers 1, 2, . . . , 1963 so
that the sum of any two of the selected numbers is divisible by 26?

26.2.7.5. A system of segments is called connected if from the endpoints of any segment any of endpoints
of any other segment can be reached by moving along the segments. We assume that it is impossible to
pass from one segment to another one at intersection points other than those of connection. Is it possible to
connect five points by segments into a connected system so that after erasing any of its segments one gets
exactly two connected systems of segments, disconnected from each other?
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Grade 8
26.2.8.1. Let a1, . . . , an be arbitrary positive integers. Denote by bk the number of integers that satisfy

ai ≥ k. Prove that
a1 + a2 + · · ·+ an = b1 + b2 + . . . .

26.2.8.2. An 8 × 8 table contains all integers from 1 to 64. The numbers are called adjacent if the
squares they are written upon have a common side. Prove that there exist two adjacent numbers whose
difference is not less than 5.

26.2.8.3. Find the set of the centers of mass of all acute triangles inscribed in a given circle.

26.2.8.4. What greatest number of integers can be selected from the set 1, 2, . . . , 1963 so that no sum
of any two selected numbers were divisible by their difference?

26.2.8.5*. Three gentlemen walk along a path 100 meters long at a constant speed of 1, 2, and 3 km/hr,
respectively. Reaching the end of the path each of them turns and goes back at the same speed. Prove that
there is an interval of 1 minute during which all three gentlemen walk in the same direction.

Grade 9
26.2.9.1*. Given an arbitrary 4ABC, its medians AM , BN , CQ, and a point X outside it. Prove that

the area of one of the triangles 4XAM , 4XBN , or 4XCQ is equal to the sum of areas of the other two.

26.2.9.2. A closed 14-angled broken line is drawn along the lines of a piece of mesh paper. No line of
the graph contains more than two links of the broken line and no two links can go in succession along one
horizontal or vertical line. What is the greatest number of self-intersection points that the brocken line can
have?

26.2.9.3. We drew all diagonals in a regular decagon. How many nonsimilar triangles is it possible to
form from all sides and diagonals of the decagon?

26.2.9.4. A 9× 9 table contains all integers from 1 to 81. Prove that there exist two adjacent numbers
whose difference is not less than 6. (Cf. Problem 26.2.8.2.)

26.2.9.5. See Problem 26.2.7.5.

Grade 10
26.2.10.1. Prove that the equation xn + yn = zn cannot have integer solutions if x+ y is prime and n

is an odd number > 1.

26.2.10.2. We drew a mesh of n horizontal and n vertical straight lines on a sheet of paper. How many
distinct closed broken, perhaps, self-intersecting, lines of 2n segments each can one draw along the lines of
the mesh so that each broken line traverses along all horizontal and vertical lines?

26.2.10.3. In a regular 25-gon we drew vectors from the center to all the vertices. How to select several
of these 25 vectors for the sum of the selected vectors to be the longest?

26.2.10.4. Let A′, B′, C ′, D′, E′ be the midpoints of the sides of convex pentagon ABCDE. Prove
that 2SA′B′C′D′E′ ≥ SABCDE .

26.2.10.5*. Consider the sequence a1 = a2 = 1, an = a2
n−1+2

an−2
for n ≥ 3. Prove that the an are integers.

Grade 11
26.2.11.1. Prove that there are no distinct positive integers x, y, z, t such that

xx + yy = zz + tt.

26.2.11.2. Prove that of 11 arbitrary infinite decimal fractions one can select two fractions with the
difference between them having either an infinite number of zeros or an infinite number of nines in the
decimal expression.

26.2.11.3. Find all polynomials P (x) satisfying the identity

xP (x− 1) = (x− 26)P (x) for all x.

26.2.11.4. See Problem 26.2.10.4.

26.2.11.5*. Prove that on a sphere it is impossible to arrange three arcs of great circles of measure 300◦

each so that no two of them have any common points (endpoints included). (See Fig. 54.)
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Figure 54. (Probl. 26.2.11.5)

Olympiad 27 (1964)

Tour 27.1
Grade 7

27.1.7.1. In 4ABC, the heights dropped to sides AB and BC are not shorter than the respective sides.
Find the angles of the triangle.

27.1.7.2. On a given circle, there are selected two diametrically opposite points A and B and a third
point, C. The tangent to this circle at B meets line AC at M . Prove that the tangent drawn to this circle
at C divides BM in halves.

27.1.7.3. Prove that the sum of the digits in the decimal expression of a perfect square cannot be equal
to 5.

27.1.7.4. We drew 11 horizontal and 11 vertical intersecting straight lines on a sheet of paper. We call
a segment of one of the straight line drawn that connects two neighboring intersections a “link”. What least
number of links must we erase in order for each intersection to be a junction of not more than 3 links?

27.1.7.5. Consider the sequence a0 = a1 = 1; an+1 = an−1an + 1 for n = 1, 2, . . . . Prove that a1964 is
not divisible by 4.

Grade 8
27.1.8.1. See Problem 27.1.7.1.

27.1.8.2. Find all positive integers n such that (n− 1)! is not divisible by n2.

27.1.8.3. Solve in integers for unknowns x, y and z:
√
x+

√
x+ · · ·+√x = z (y-many square roots).

27.1.8.4. See Problem 27.1.9.4 a) below.

27.1.8.5. Take the sums of digits of all numbers from 1 to 1 000 000. Next, take the sums of digits of the
numbers obtained, etc., until you get 1 000 000 one-digit numbers. Which number is more numerous among
them: 1 or 2?

Grade 9
27.1.9.1. Solve the system in positive numbers:





xy = z,
yz = x,
zx = y.

27.1.9.2. Prove that the product of two consecutive positive integers is not a power of any integer.

27.1.9.3. Given that a− k3
... 27− k for any integer k, except k = 27, find a.
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27.1.9.4. a) Prove that if all angles of a hexagon are equal, then its sides satisfy the following relations:

a1 − a4 = a5 − a2 = a3 − a6.

b) Prove that if the lengths of segments a1, . . . , a6 satisfy the above relations, then one can construct
from them an equiangular hexagon.

27.1.9.5. In quadrilateral ABCD, We drop perpendiculars from vertices A and C to diagonal BD, and
from vertices B and D, to AC. Let M , N , P , Q be the bases of the perpendiculars. Prove that quadrilaterals
ABCD and MNPQ are similar. (See Fig. 55.)

Figure 55. (Probl. 27.1.9.5) Figure 56. (Probl. 27.2.7.1)

Grades 10− 11
27.1.10-11.1. A number N is a perfect square and does not end with a zero. After erasing its two last

digits, one gets another perfect square. Find the greatest N with this property.
27.1.10-11.2. See Problem 27.1.8.3.
27.1.10-11.3. It is known that for any integer k 6= 27 the number a− k1964 is divisible by 27− k. Find

a. (Cf. Problem 27.1.9.3.)
27.1.10-11.4. See Problem 27.1.8.4.
27.1.10-11.5. What is the least number of nonintersecting tetrahedrons into which a cube can be

divided?

Tour 27.2
Grade 7

27.2.7.1. We select an arbitrary point B on segment AC. Segments AB, BC, and AC are diameters of
circles T1, T2 and T3, respectively. Consider a straight line through B; let it intersect T3 at P and Q, and
let it intersect T1 and T2 at R and S, respectively. Prove that PR = QS. (See Fig. 56.)

27.2.7.2. 2n persons attanded a party. Everyone was acquainted with at least n guests. Prove that
it is possible to select 4 of the guests and seat them at a round table so that each sits next to his or her
acquaintances.

27.2.7.3. 102 points, no three of which are on the same straight line, are chosen in a square with side
1. Prove that there exists a triangle with vertices at these points and of area less than 1

100 .
27.2.7.4. Through opposite vertices A and C of quadrilateral ABCD a circle is drawn intersecting AB,

BC, CD and AD at M , N , P and Q, respectively. Suppose DP = DQ = BM = BN = R, where R is the
radius of the circle. Prove that ∠ABC + ∠ADC = 120◦.

27.2.7.5. For what positive integers a the equation x2 + y2 = axy has a solution for x and y in positive
integers?

Grade 8
27.2.8.1. Each of n glasses of sufficient capacity contains the same amount of water as the other glasses

do. At one step we may pour as much water from any glass into any other as the recepting glass already
contains. For what n is it possible to empty all glasses into one glass in a finite number of steps?

27.2.8.2. Consider three points A, B, C on the same straight line and one point, O, not on it. Denote
by O1, O2, O3 the centers of circles circuscribed around triangles 4OAB, 4OBC, 4OAC. Prove that the
points O1, O2, O3 and O are all on one circle, see Fig. 57.
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Figure 57. (Probl. 27.2.8.2)

27.2.8.3. Two players sit at a 99 × 99 tic-tac-toe board. The first player draws a “×” in the central
square. Then the second player may draw a “O” in any of the eight squares adjacent to the ×. Now, the
first player draws a × in any of the squares adjacent to those already occupied, and so on. The first player
wins if (s)he can draw his/her × in any corner square. Prove that the first player can always win.

27.2.8.4. Inside an equilateral (not necessarily regular) heptagon A1A2A3A4A5A6A7 an arbitrary point
O is chosen. Denote by H1, H2, H3, H4, H5, H6, H7 the bases of the perpendiculars dropped from O to
A1A2, A2A3, A3A4, A4A5, A5A6, A6A7, respectively. It is known that points H1, H2, H3, H4, H5, H6, H7

belong to the sides themselves, not to their extensions. Prove that

A1H1 +A2H2 +A3H3 +A4H4 +A5H5 +A6H6 +A7H7

= H1A2 +H2A3 +H3A4 +H4A5 +H5A6 +H6A7 +H7A1.

27.2.8.5*. 101 distinct points are chosen at random in a square of side 1 (not necessarily inside it, some
points might lie on the sides), so that no three of the points belong to one straight line. Prove that there is
a triangle with vertices at some of the fixed points whose area does not exceed 0.01.

Grade 9
27.2.9.1. See Problem 27.2.8.1.
27.2.9.2. See Problem 27.2.8.4.
27.2.9.3. Prove that any non-negative even number 2n can be uniquely represented in the form 2n =

(x+ y)2 + 3x+ y, where x and y are nonnegative integers.
27.2.9.4. In 4ABC, side BC is equal to a halfsum of the other two sides (AB 6= AC). Prove that the

bisector of ∠BAC is perpendicular to the segment connecting the centers of the inscribed and circumscribed
circles.

27.2.9.5*. On a graph paper consider a closed broken line whose vertices are in the nodes of the grid
and all segments of the broken line are equal. Prove that the number of the segments of such a broken line
is even.

Grade 10
27.2.10.1. n beakers contain n distinct liquids, there is also an empty beaker. We assume that each

beaker is continuously graded so that we can measure the volume of liquid inside it. Is it possible to compose
uniform mixtures in each beaker inside a finite length of time? In other words, is it possible to arrange so
that each of the n beakers contains exactly 1

n of the initial quantity of each liquid and one beaker is empty?

27.2.10.2. We have a system of n points on a plane such that for any two points there is a movement
of the plane sending the first point to the second one and the whole system into itself. Prove that all points
of such a system belong to a circle.

27.2.10.3. In 4ABC, side BC is equal to a halfsum of the other two sides. Prove that vertex A, the
midpoints of AB and AC and the centers of the inscribed and circumscribed circles belong to one circle.

27.2.10.4. See Problem 27.2.9.5.
27.2.10.5*. Several positive integers are written on each of infinitely many cards so that for any n there

is exactly n cards on which the divisors of n are written. Prove that every positive integer is encountered
on at least one card.
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Grade 11
27.2.11.1. Several vectors begin from point O on a plane; the sum of their lengths is equal to 4. Prove

that it is possible to select several of these vectors (perhaps, one) the length of whose sum (whose length) is
greater than 1.

27.2.11.2. See Problem 27.2.8.3.
27.2.11.3. In 4ABC, sides AB and AC are of different length, side BC is equal to their halfsum.1

Consider the circle through A and the midpoints of AB and AC. Consider the tangents to the circle pass
through the triangle’s center of mass. Prove that a) one of the tangent points is the center of the circle
inscribed in 4ABC, b) the straight line through the intersection point of medians and the intersection point
of bisectors of 4ABC is tangent to this circle. (Cf. Problem 27.2.8.4 and 27.2.10.3.)

27.2.11.4*. A pie is of the form of a regular n-gon inscribed in a circle of radius 1. One straight cut of
length 1 is made from the midpoint of each side. Prove that in this way we always cut off a piece of the pie
(even if we’d rather not).

27.2.11.5*. Once upon a time there were 2n knights at King Arthur’s court; each of the knights had
not more than n− 1 enemies among the knights present. Prove that Merlin, King Arthur’s counsellor, can
place the knights at the Round Table so that no knight will have his enemy as a neighbor.

Olympiad 28 (1965)

Tour 28.1
Grade 8

28.1.8.1. Given circle S, straight line a intersecting S, and a point M . Draw a line b through M so
that the part of b inside S is bisected by a. (See Fig. 58.)

Figure 58. (Probl. 28.1.8.1)

28.1.8.2. Prove the validity of the following test of divisibility by 37. Divide the decimal expresesion
of n into groups of 3 digits from right to left. If the sum of the resulting three-digit numbers is divisible

by 37, then n
... 37. (These three-digit numbers may begin with zeros and, therefore, be actually two-digit or

one-digit numbers; e.g., the left-most group can be so.)
28.1.8.3. Given straight line a and two nonparallel segments AB and CD on one side of it. Find a

point M on a such that 4ABC and 4CDM have equal areas.
28.1.8.4. 30 teams participate in a soccer tournament. Prove that during the tournament there always

exist two teams which have played the same number of games.

Grade 9
28.1.9.1. A six-digit number is divisible by 37. All its digits are different. Prove that one can form from

the same digits another six-digit number divisible by 37.
28.1.9.2. Inside a given triangle ABC, find a point O such that the ratio of areas of triangles 4AOB,

4BOC and 4COA is equal to 1 : 2 : 3.

1The original formulation was vague. It did not state that AB 6= BC. But if AB = BC the circle’s center of mass lies
on the circle causing a degeneracy. It was also unclear whether the center of mass will automatically be outside the circle
constructed, or to have it outside is an extra condition.
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28.1.9.3. Consider 4ABC with AB > BC and bisectors AK and CM , where K is on BC and M on
AB. Prove that AM > MK > KC.

28.1.9.4. In Illiria, some pairs of towns are connected by direct airlines. Prove that there exist two
towns in Illiria that are connected with the same number of other towns. (Cf. Problem 28.1.8.4.)

28.1.9.5. An elderly woman decides to reduce noise from the flat below by placing along her (rectangular)
corridor rectangular mats of the same width as the corridor. The mats cover the entire floor and even overlap
so that certain portions of the floor are covered by several layers.

Prove that it is always possible to remove several mats, perhaps taking them from underneath and leaving
the others in their original positions, so that the floor will remain completely covered and the combined length
of the remaining mats will be less than twice the length of the corridor.

Grade 10
28.1.10.1. The circles O1 and O2 are inside 4ABC. They are tangent to each other externally; more-

over, O1 is tangent to AB and BC, and O2 is tangent to AB and AC. Prove that the sum of the radii of
these circles is greater than the radius of the circle inscribed in ABC. (See Fig. 59.)

Figure 59. (Probl. 28.1.10.1) Figure 60. (Probl. 28.1.10.3)

28.1.10.2. See Problem 28.1.9.1.

28.1.10.3. The endpoints of a segment of fixed length slide along the legs of a given angle. The per-
pendicular to the segment is erected from its midpoint. Prove that the distance from the base of the sliding
perpendicular to the point where it meets the bisector of the angle is a constant. (See Fig. 60.)

28.1.10.4. Let x > 2. Somebody writes on cards the numbers 1, x, x2, x3, . . . , xk (a number per card).
Then Somebody puts some of the cards in her right pocket, some in her left pocket, and throws away the
rest.

Prove that the sum of the numbers in Somebody’s right pocket cannot be equal to the sum of the
numbers in her left pocket. (Cf. Problem 28.1.11.1.)

28.1.10.5. A paper square has 1965 perforations. No three of the 1969 points — the union of the perfo-
ration points with the square’s vertices — lie on the same straight line. We cut along several nonintersecting
line segments with endpoints at perforations or vertices on the square. It turns out that the cuts divide
the square into triangles inside which there are no perforations. How many cuts were made and how many
triangles were obtained?

Grade 11
28.1.11.1. Each coefficient of a polynomial f(x) is equal to 1, 0 or −1. Prove that all real roots (if any)

of the polynomial lie on the segment [−2, 2].
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28.1.11.2. Given three points on a plane, construct three circles tangent to one another at these points.
Consider all possible cases.

28.1.11.3. In the quadratic equation x2 + px+ q = 0, the coefficients p and q independently take on all
values from segment [−1, 1]. Find the set of real roots of these quadratic equations.

28.1.11.4. Given circle O, a point A on it, the perpendicular erected at A to the plane on which O lies,
and a point B on this perpendicular. Find the locus of bases of perpendiculars drawn from A to the straight
line through B and any point on circle O.

28.1.11.5*. Given 20 cards with each of the figures 0, . . . , 9 written on two of these cards. Find whether
it is possible to arrange the cards in a row so that the zeros are next to one another, the 1’s have one card
between them, the twos have two cards between them, etc., and the nines have nine cards between them.

Tour 28.2
Grade 8

28.2.8.1*. Given an infinite in both ways sequence

. . . , a−n, . . . , a−1, a0, a1, . . . , an, . . . , where an = 1
4(an−1 + an+1),

prove that if some two of its terms (not necessarily adjacent) are equal, then the sequence contains an infinite
number of pairs of equal terms.

28.2.8.2. We place a rectangular billiard table of size 26 × 1965 so that two of its longer sides are
oriented North-South and its shorter sides are oriented East-West. The pockets are only at the vertices of
the rectangle. A ball is shot from the lower left (SW) pocket of the billiard at an angle of 45◦. Prove that
after several rebounds from the sides the ball will reach the upper left (NW) pocket.

28.2.8.3. We divide two paper discs of different size into 1965 equal sectors. On each of the discs we
select at random 200 sectors and paint them red. We put the smaller disc on top of the bigger one, so that
their centers coincide and the sectors of one lie just over the sectors of the other. A position is the new
relation between discs that they assume after we rotate the smaller disc through all angles that are multiples
of 2π

1965 , while the bigger disc is fixed. Prove that in at least 60 positions not more than 20 red sectors of
both discs coincide.

28.2.8.4*. In a fairyland, a row of houses, with square foundations of side a, stands between two parallel
streets. The distance between the streets is 3a, and the distance between two neighboring houses is 2a. One
street is patrolled by cops who stroll at a distance of 9a from one another, at a constant speed v no matter
what. When the first cop passes the middle of a certain house, a robber appears, exactly opposite the cop,
on the other street, see Fig. 61.

Figure 61. (Probl. 28.2.8.4)

The robber is doomed to move with a constant speed; thanks to a Good Fairy the robber can reach any
value of speed, without any acceleration, instantaneously. At what constant speed and in which direction
should the robber move along that street so that no cop spots him?

Grade 9
28.2.9.1. See Problem 28.2.10.1.
28.2.9.2. We shot a ball from a vertex of a rectangular billiard table with pockets at its vertices at an

angle of at 45◦ to the side. If the ball reaches a pocket, it fells into it. After a while the ball reached the
midpoint of a certain side. Prove that it could not have already touched the midpoint of the opposite side.

28.2.9.3. See Problem 28.2.8.1.
28.2.9.4. See Problem 28.2.10.2.



OLYMPIAD 29 (1966) 83

28.2.9.5. Find the locus of the centers of equilateral triangles circumscribed around an arbitrary given
triangle.

Grade 10
28.2.10.1. We have 11 sacks of coins and a balance with two pans and a hand dial that indicates which

pan contains a heavier load and what is the difference in their weights. We can weigh any number of coins
from any sack. We know that all coins in one sack are counterfeit, and all other coins are genuine. All
genuine coins are of weight x, whereas all counterfeit coins are of weight y, where neither x nor y are known.
What is the least number of weighings needed to determine which sack has counterfeit coins?

28.2.10.2. On a n×n piece of graph paper, we arrange black and white cubes so that each cube stands
on exactly one 1 × 1 square formed by the paper’s mesh. We had formed the first layer of n2 cubes when
The Rule was issued: two cubes are called neighboring to each other if they have a common face; each black
cube must have an even number of neighboring white cubes, and each white cube must have an odd number
of neighboring black cubes.

So we arranged the second layer of cubes in such a way that all cubes of the first layer obeyed The Rule.
If all cubes of the second layer also satisfy The Rule, we are done. If this is not the case, we have to fill in
the third layer so that all cubes of the second layer satisfy The Rule, etc. Does there exist an arrangement
of cubes in the first layer for which this process is infinite?

28.2.10.3. Let p and q be odd integers. A p × 2q rectangular billiard table has pockets at each vertex
and in the midpoints of sides of length 2q. A ball is shot from a vertex at an angle of 45◦ to the sides. Prove
that the ball will wind up in one of the middle pockets. (Cf. Problem 28.2.9.2.)

28.2.10.4. All integers 1 to 2n are written in a row in an arbitrary order. Then to each integer the
number of its place in the row is added. Prove that among the sums obtained there are at least two that
have the same remainders after division by 2n.

28.2.10.5*. In a box there are two smaller boxes, in each of which there are two more boxes, etc. There
are 2n smallest boxes, each contains a coin. Some of these coins are heads up, some tails up. In one move,
any box may be turned upside down, together with everything it contains. Prove that in not more than n
moves the boxes may be so arranged that the number of coins with heads up is equal to the number of coins
with tails up.

Grade 11
28.2.11.1. Find all primes of the form pp + 1 and of not more than 19 decimal digits, where p is a

positive integer.
28.2.11.2. Prove that the last digits of numbers of the form nn, where n is a positive integer, constitute

a periodic sequence.
28.2.11.3*. Given plane P and two points A and B on either side of it, construct a sphere through

these points that cuts in P a disc of the smallest possible area.
28.2.11.4. Consider a non-convex and non-selfintersecting polygon on a plane. Let D be the union of

points on those diagonals of the polygon that do not go outside its limits (i.e., are either entirely inside it or
partly inside and partly on its boundary; the endpoints of these diagonals should also belong to D). Prove
that any two points of D may be connected by a broken line contained entirely within D.

28.2.11.5. Each square of an M ×M table contains nonnegative integers so that if a 0 is at the inter-
section of a row and a column, then the sum of the numbers in this row and this column is not less than M .
Prove that the sum of all numbers in the table is not less than M2

2 .

Olympiad 29 (1966)

Tour 29.1
Grade 8

29.1.8.1. Find the locus of the centers of all rectangles inscribed in a given 4ABC with one side of the
rectangles on AB.

29.1.8.2. Find all two-digit numbers that being multiplied by an integer yield a product whose penul-
timate digit is 5.

29.1.8.3. See Problem 29.1.9-11.1.
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29.1.8.4. See Problem 29.1.9-11.5.
29.1.8.5*. From a complete set of 28 dominoes, we remove all dominoes that have 6 dots (on any half,

not in sum). Is it possible to arrange the remaining dominoes in a chain?

Grades 9− 11
29.1.9-11.1. Solve in positive integers the system of equations{

x+ y = zt,
z + t = xy.

29.1.9-11.2. For what value of k is the expression Ak = 19k + 66k

k! the greatest?
29.1.9-11.3. We place a convex pentagon inside a circle, so that its vertices are either on the circle or

inside it. Prove that at least one of the pentagon’s sides is not longer than the side of a regular pentagon
inscribed in this circle.

29.1.9-11.4. Prove that the positive integers k, for which kk + 1 is divisible by 30, constitute an arith-
metic progression and describe that progression.

29.1.9-11.5. In checkers, what is the greatest number of kings that may be arranged on the black
squares of an 8× 8 checker-board, so that each king may be jumped by at least one other king?

Tour 29.2
Grade 8

29.2.8.1. Divide a line segment into six equal parts with a ruler and compass constructing not more
than eight curves (straight lines or arcs).

29.2.8.2*. Let a1 = 1 and for k > 1 define ak = [
√
a1 + a2 + · · ·+ ak−1 ], where [x] denotes the integer

part of x. Find a1000.
29.2.8.3*. There is a test that for any set of balls can determine whether the set contains any radioactive

balls, but but it cannot tell how many of the balls are radioactive. We know that two of the given 19 balls
are radioactive. Find both the radioactive balls after 8 tests. (Cf. Problem 29.2.9-11.3 below).

29.2.8.4. A subway system has not more than four stations along each line, not more than three of which
are intersections with the other lines. Moreover, not more than two lines meet at any of the intersections.
What greatest number of lines can such a system have if it is possible to get from any station to any other
station with not more than two train changes?

29.2.8.5*. Prove that there exists k such that the first 4 digits of k! are 1966.

Grades 9− 11
29.2.9-11.1. See Problem 29.2.8.1.
29.2.9-11.2*. See Problem 29.2.8.2, where a1 = 1966, and find a1966.
29.2.9-11.3*. There is a test that for any set of balls can determine whether the set contains any

radioactive balls, but but it cannot tell how many of the balls are radioactive. We know that two of the
given 11 balls are radioactive. Prove that fewer than seven tests do not guarantee the discovery of both
radioactive balls, whereas one can determine them by seven tests.

29.2.9-11.4. Given a collection of weights 1, 2, . . . , 26 g. Select 6 weights so that it is impossible to
compose with the help of (some or all of) these 6 weights two piles of equal weight. Prove that it is impossible
to select 7 weights with the same property.

29.2.9-11.5. On an 11 × 11 checker-board 22 squares are marked so that exactly two of the marked
squares lie in each column and each row. Two arrangements of marked squares are considered equivalent if
in any number of permutations of the columns and/or (independent) permutations of rows one arrangement
can be obtained from the other. How many nonequivalent arrangements of marked squares are there?

Olympiad 30 (1967)

Tour 30.1
Grade 8

30.1.8.1. Do there exist two consecutive positive integers such that the sum of the digits of each of them
is divisible by 125? Either find the smallest such pair of numbers or prove that they do not exist.
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30.1.8.2. Given 4ABC, find a point M on side AB or its extension so that the sum of the radii of the
circles circumscribed abound 4ACM and 4BCM is minimal.

30.1.8.3. A spy must cipher his (her) message. For this (s)he wants to divide all decimal “words” —
sets of ten signs, each either a dot or a dash — into two groups, so that any two words of the same group
differ in not less than three places. Either describe such a division or prove that the spy’s assignment is
hopeless.

30.1.8.4. Given 4ABC, find the locus of all points M for which 4ABM and 4BCM are isosceles.
30.1.8.5. In the city of Fuchs, Ostap Bender organized a distribution of elephants to people. There

were present 28 trades union members and 37 non-members. Ostap distributed the elephants so that the
shares of all trades union members were equal, and the shares of non-members were also equal. It turned out
that there existed only one such distribution (of all elephants). What greatest number of elephants could O.
Bender have had?

Remark. O. Bender is a main character of a satiric dilogy by I. Il’f and E. Petrov. It became immensely popular since
it had been first published in the late ’20s. A part of it, translated into English in the ’30s under the title The Little Golden
Calf, is a series of adventures of Jeff Peters and Andy Tuckers type. Among O. Bender’s rackets were paid popular lectures and
prophesies. An announcement written in the spirit of ‘Royal Nonsuch’ from Huck Finn’s adventures said that after the lecture
O. Bender was to distribute elephants. At the time of Bender’s adventures the majority of the audience — hicks and red-necks
— had no hope to get ‘elephants’; all of them, even the “privileged” trades union members, were primarily interested not even
in future-telling but in the immediate now and prone to ask Bender “Why there is no butter on sale?” or “Are you a Jew?”
(Miraculously, this book is even more timely now, in late ’90s.)

Grade 9
30.1.9.1. A maze consists of n circles, all tangent to straight line L at M . All circles are on the same

side of L and their lengths form a geometric progression with denominator 2. Two pedestrians enter the
maze at different moments. Their speeds are equal but the directions of their trajectories are different. Each
of them circumvents all circles, starting with the smaller, in increasing order and, having circumvent the
greatest, enters the smallest one again. Prove that the pedestrians will meet each other. (See Fig. 62.)

Figure 62. (Probl. 30.1.9.1) Figure 63. (Probl. 30.1.9.2)

30.1.9.2. Is it possible to cut a square pie into 9 pieces of equal area by choosing two points inside the
square and connecting each of them by straight cuts with all vertices of the square? If it is possible, how
can the two points be found? (See Fig. 63.)

30.1.9.3. See Problem 30.1.8.2.
30.1.9.4. Consider integers with the sum of their digits divisible by 7. What is the greatest difference

between two consecutive such integers?
30.1.9.5. We transpose the first 12 digits of a 120-digit number in all possible ways, and out of the

120-digit numbers obtained we randomly choose 120 numbers. Prove that the sum of the chosen numbers is
divisible by 120.

Grade 10
30.1.10.1. Inside a square consider k points (k > 2). Into what least number of triangles must we divide

the square for each triangle to contain not more than one point?
30.1.10.2. Prove that in a circle of radius 1 there may be not more than 5 points such that the distance

between any two of them is greater than 1.
30.1.10.3. Prove that the equation 19x3 − 17y3 = 50 has no integer solutions.
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30.1.10.4. An infinite pie occupying all space has raisins of diameter 0.1 with centers at the points with
integer coordinates. Finitely many planes cut the pie. Prove that there still exists an uncut raisin.

30.1.10.5. Of the first k primes 2, 3, 5, . . . , pk (k > 4) we compose all possible products every prime
entering the product not more than once, e.g. 3 · 5, 3 · 5 · · · · · pk, 11 · 13, 7, etc. Let S be the sum of all such
products. Prove that S + 1 is the product of more than 2k prime factors.

Tour 30.2
Grade 7

30.2.7.1. In 4ABC, consider heights AE, BM and CP . It turns out that EM ‖ AB and EP ‖ AC.
Prove that MP ‖ BC.

30.2.7.2. Four electric bulbs must be installed above a square skating-rink in order to illuminate it
completely. At what least height may the lamps be hung, if each lamp illuminates a disc of a radius equal
to the lamps’ height from the floor?

30.2.7.3. Prove that there exists an integer q such that the decimal expression of q · 21000 contains no
zeros. Cf. Problem 30.2.8.1.

30.2.7.4. A number y is obtained from a positive integer x by a permutation of its digits. Prove that
x+ y 6= 99...99 (1967 nines).

30.2.7.5. Spotlights, each of which illuminates a right angle, are placed at four given points on a plane.
The sides of the illuminated angles may be directed only to the north, south, west or east. Prove that the
spotlights may be so directed that they illuminate the entire plane; see Fig. 64.

Figure 64. (Probl. 30.2.7.5)

Grade 8
30.2.8.1. See Problem 30.2.7.3 for q · 21967.
30.2.8.2. Denote by d(N) the number of divisors of N (1 and N are also considered as divisors of N).

Find all N such that N/d(N) = p is a prime.
30.2.8.3. A square is constructed on each side of a right triangle and the entire figure is inscribed in a

circle. For what right triangles is this possible? Cf. Problem 30.2.9.3.
30.2.8.4. A black king and 499 white rooks stand on a 1000×1000 chess-board. Black and white pieces

move in turn. Prove that whatever the strategy of the whites, the king may always commit suicide after
several moves (i.e., get in the way of a rook).

30.2.8.5. Seven children decided to visit seven movie theaters one day. At each movie theater the shows
started at 9.00, 10.40, 12.20, 14.00, 15.40, 17.20, 19.00 and 20.40 (altogether 8 shows). Six children went
together to each show, and each time the seventh kid (not necessarily the same person each time) decided
to be independent and went to another movie theater. By night each kid had been to each of the seven
theaters chosen. Prove that there was a show in each movie that none of the children saw.

Grade 9
30.2.9.1. A number y is obtained from a positive integer x by a permutation of its digits and x+ y =

100 . . . 00︸ ︷︷ ︸
200 zeros

. Prove that x is divisible by 50.

30.2.9.2. Given a sequence of positive integers x1, x2, . . . , xn, each not greater than M , and with xk =
|xk−1 − xk−2| for all k > 2. Determine the greatest possible length of this sequence.

30.2.9.3. We construct a square outwards on each side of a right 4ABC. It turns out that all vertices
of the squares distinct from A, B, C lie on one circle. Prove that 4ABC is isosceles. Cf. Problem 30.2.8.3.
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30.2.9.4*. Let
←
N be the number N written in reverse order, e.g.,

←−−
1967 = 7691,

←−
450 = 54. For any

positive integer N divisible by K the number
←
N is also divisible by K. Prove that K is a divisor of 99.

30.2.9.5. A king of Spain decided to rearrange the portraits of his predecessors that hung in a circular
tower of his castle. He ruled, however, that only two adjacent portraits be interchanged in one day and that,
moreover, they could not be the portraits of the kings one of whom immediately succeeded the other. Two
distinct arrangements that could have been obtained from each other, if the castle could rotate, were ordered
to be considered as identical. Prove that, following this Rule, the king can always find any new arrangement
of the portraits regardless of their initial positions.

Grade 10
30.2.10.1*. Let m and n− k be relatively prime given numbers. We are given an n× n table filled in

with numbers as follows: numbers 1, 2, . . . , n are written in the first row; if some row contains the numbers

a1, . . . , ak, ak+1, . . . , am, am+1, . . . , an

then the next row contains the same numbers but in the following order:

am+1, . . . , an, ak+1, . . . , am, a1, . . . , ak.

Prove that, after the table is filled, each column contains all numbers 1 to n.
30.2.10.2. See Problem 30.2.9.3.
30.2.10.3. Is it possible to arrange the numbers 1, 2, . . . , 12 on a circle so that the difference between

any two adjacent numbers is 3, 4 or 5?
30.2.10.4. Eight spotlights are situated at eight given points in space, each spotlight illuminates a

trihedral angle with mutually perpendicular faces. Prove that the spotlights may be turned so as to illuminate
the entire space. (Cf. Problem 30.2.7.5.)

30.2.10.5. Consider all possible n-digit numbers, n ≥ 2, composed of figures 1, 2 and 3. At the end
of each of these n-digit numbers we write a 1, 2 or 3 in such a way that if two numbers differ in all the
corresponding digits, then we write additional different digits at their ends (one digit each). Prove that there
exists an n-digit number which contains only one 1 and at whose end a 1 is written.
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Olympiad 31 (1968)

Tour 31.1
Grade 7

31.1.7.1. Number 4 has the following property: when divided by q2, for any q, the remainder is less

than q2

2 . Find all numbers with the same property.
31.1.7.2. Arrange 16 numbers in a 4×4 table so that their sum along any vertical, horizontal or diagonal

line is equal to zero. We assume that the table has 14 diagonals altogether.
31.1.7.3. Prove that for any three given numbers, each < 1 000 000, there is a number < 100 that is

relatively prime to every one of the given numbers.
31.1.7.4. How may 50 cities be connected by the least possible number of airlines so that from any city

one could get to any other by changing airplanes not more than once (i.e., using two planes)?

Grade 8
31.1.8.1. 12 people took part in a chess tournament. After the end of the tournament every participant

made 12 lists. The first list consisted of the author; the second list – of the author and of those (s)he has
beaten; and so on; the 12-th list consisted of all the people on the 11-th list and those they have beaten. It
is known that the 12-th list of every participant contains a person who is not on the participant’s 11-th list.
How many games ended in a draw?

31.1.8.2. Given numbers 4, 14, 24, . . . , 94, 104, prove that it is impossible to strike out first one number,
then another two, then another three, and then another four, so that after each striking out the sum of the
remaining numbers is divisible by 11.

31.1.8.3. Is it possible to inscribe a convex heptagon A1A2A3A4A5A6A7 with angles ∠A1 = 140◦,
∠A2 = 120◦, ∠A3 = 130◦, ∠A4 = 120◦, ∠A5 = 130◦, ∠A6 = 110◦, ∠A7 = 150◦ in a circle?

31.1.8.4. Find 100 numbers ssuch that
x1 = 1;
0 ≤ x2 ≤ 2x1;
0 ≤ x3 ≤ 2x2;
. . . . . . . . . . . . . . . .
0 ≤ x99 ≤ 2x98;
0 ≤ x100 ≤ 2x99;

so that the expression S = x1 − x2 + x3 − x4 + · · ·+ x99 − x100 is the greatest possible.
31.1.8.5. Is it possible to arrange 1000 segments on a plane so that the endpoints of every segment are

on other segments but not at their endpoints?

Grade 9
31.1.9.1. Is there a quadrilateral ABCD of area 1 such that for any point O inside it the area of at

least one of the triangles 4OAB, 4OBC, 4OCD, or 4OAD is an irrational number?
31.1.9.2. Cf. Problem 31.1.8.5 for 1968 segments.
31.1.9.3. A corridor 100 meters long is covered with 20 rugs of the same width as the corridor and of a

combined length of 1000 meters. What greatest number of uncovered parts may the corridor have?
31.1.9.4. Is it possible to select 100 000 telephone numbers consisting of 6 digits each so that if we

simultaneously strike out the k-th digit (k = 1, 2, 3, 4, 5, 6) of every number, we get all numbers 00 000 to
99 999?

31.1.9.5. Prove that if p and q are primes and q = p+ 2, then pq + qp
... p+ q.

Grade 10
31.1.10.1*. 100 airplanes (one in the lead, 99 following) take off simultaneously from the same airport.

A plane with a full tank of fuel can cover a distance of 1000 km. During a flight, fuel may be transferred
from one plane to another. A plane that gave all its fuel to the other planes makes a gliding landing. How
should the flight be organized for the leading plane to fly as far as possible?

31.1.10.2. Two people are playing a game. There are two piles containing 33 and 35 candies. A player
eats up one of the piles and divides the second one into two (not necessarily equal) parts. If (s)he cannot
divide a pile because it only has one candy, (s)he eats the candy and wins. Moves are made in turn. Who
will win the game, the one who starts or the other party, and how should they play to win?
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31.1.10.3. The Rule states: integers m and n belong to the same subset if one can be obtained from the
other by striking out two of its adjacent identical digits or two identical groups of digits (for example, the
numbers 7, 9 339 337, 93 223 393 447, 932 239 447 belong to the same subset). Is it possible to divide the set
of all non-negative integers into 1968 subsets, with at least one number in each, so that the Rule is fulfilled?

31.1.10.4. Using a given sequence of positive numbers q1, q2, . . . , qn, . . . , a sequence of polynomials is
constructed in the following way:

f0(x) = 1, f1(x) = x and fn+1(x) = (1 + qn) · xfn(x)− qnfn−1(x) for n ≥ 1.

Prove that all real roots of these polynomials belong to [−1, 1].
31.1.10.5. Given 4 lines l1, l2, l3, l4 in space, each pair of them skew and no three of them parallel to

one plane. Draw a plane, P , such that the intersection points A1, A2, A3, A4 of these lines with P make a
parallelogram. How many solutions are there?

Tour 31.2
Grade 7

31.2.7.1. The vertices of a regular 1968-gon are marked on a plane. Two players, in turn, connect two
vertices of the polygon by a segment, obeying the following Rule: two points may not be connected if one
of them is already connected to a point, and segments already drawn may not be intersected by others. The
player who may not make a move, according to the Rule, loses. How should one play to win? Who wins if
both play optimally?

31.2.7.2. On a plane, there are given three points. We select any two of them, draw the perpendicular
through the midpoint of the segment connecting them, and reflect all 3 points through this perpendicular.
Then we again select two points among all the points, the original ones and their reflections, and repeat the
procedure ad infinitum. Prove that there exists a straight line on the plane such that all points obtained in
the end lie on one side of it.

31.2.7.3. Two painters paint a long straight fence consisting of 100 parts. They come every other day,
alternately, painting a fence around one plot red or green. The first painter is color-blind and mixes up the
colors; (s)he remembers what part of the fence (s)he has painted and what color (s)he has used. (S)he can
also feel the fresh paint left after the second painter, but can not tell its color. The first painter tries to make
the number of places where green borders red the greatest possible. What maximal number of such places
can (s)he get, whatever the second painter does?

31.2.7.4. Let x and y be unknown digits. The 200-digit number 89 252 525 . . . 2 525 is multiplied by
the number 444x18 y27. It turns out that the 53-rd digit from the right of the product is 1, and the 54-th
digit is 0. Find x and y.

31.2.7.5*. A cowboy Jimmy bets with his friends that he can shoot through all the four blades of his
fan with one bullet. His fan is constructed so that it can not effectively work as a fan but suits Jimmy fine
as a target, see Fig. 65:

Figure 65. (Probl. 31.2.7.5)

Each of the four blades is a half-disc. The blades sit on a shaft perpendicularly to it; the distances
between the planes of the blades are equal. The diameters bounding the half-discs are slanted with respect
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to one another. The shaft rotates at the rate of 50 revolutions per second. Jimmy, as a true cowboy, can
shoot whenever needed and his bullet may have any (but constant) speed he wants. Prove that Jimmy can
win the bet.

Grade 8
31.2.8.1. Let us divide all positive integers into groups so that there is one number in the first group,

two numbers in the second, three numbers in the third and so on. Is it possible to do this so that the sum
of elements in every group is the 7-th power of an integer?

31.2.8.2*. Two straight lines on a plane meet at an angle of α. A flea sits on one of the lines. Every
second it jumps from the line it sits on to the other line. (The intersection point is considered to lie on
both lines.) It is known that the length of each jump is equal to 1 and that the flea never returns to the
place where it was just before. After a while the flea returns to its initial point. Prove that α has a rational
number of degrees; see Fig. 66.

Figure 66. (Probl. 31.2.8.2) Figure 67. (Probl. 31.2.8.3)

31.2.8.3*. A round pie is cut by a special cutter that cuts off a fixed sector of the angle measure α,
turns this sector upside down, and then inserts back; after that the whole pie is rotated through an angle of
β.

Given β < α < 180◦, prove that after a finite number of such operations (the beginning of the first and
the second operations are shown on Fig. 67) every point of the pie will return to its initial place.

31.2.8.4. Consider a paper scroll of bus tickets numbered 000 000 to 999 999. The tickets with the sum
of the digits in the even places equal to the sum of the digits in the odd places are marked blue. What is
the greatest difference between the numbers on two consequitive blue tickets?

31.2.8.5. The land Farra lies on 1 000 000 000 islands. Boats ply the routes between certain islands
every day. Boat routes are organized so that one can get to any island from any other island (it could take
a few days). The timetable allows a spy and Major Pronin1 only one passage per day and there is no other
way to get from one island to another except via regular boats. The spy never boards a boat on the 13-th
of a month, but Major Pronin is not superstitious and, besides, informers always tell Major Pronin where
the spy is. According to the Rule Major Pronin catches the spy if they are both on the same island. Prove
that Major Pronin will catch the spy.

Grade 9
31.2.9.1. Consider a regular pentagon A1A2A3A4A5 on a plane. Is there a set of points on a plane

with the following property: through any point outside the pentagon it is possible to draw a segment whose
endpoints belong to the set and it is impossible to do so through points inside the pentagon.

31.2.9.2. We mark point O1 on a unit circle and, using O1 as the center, we mark (by means of a
compass) we mark point O2 on the circle (clockwise starting with O1). Using point O2 as a new center, we
repeat the procedure in the same direction with the same radius; and so on. After we had marked point
O1968 a circle is cut through each mark so we get 1968 arcs. How many different arc lengths can we thus
procure?

1A notorious hero of Soviet spycatchers.
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31.2.9.3. The following game with chess pieces is played. Two kings stand in the opposite corners of
the chessboard: the white king on square a1, the black king on square h8. Players move in turns (a white
begins). A player may move his/her king to any adjacent square, if it is vacant, according to the following
Rule: Theleast number of king’s moves needed to get from one square to another is called the distance
between the squares; thus, at the beginning of the game the distance between the kings was 7 moves. It is
not allowed to increase the distance between the kings.

To win is to get one’s king to the opposite side of the chessboard (the white king to the vertical h or
the eighth horizontal, the black king to the vertical a or the first horizontal). How should one play to win?
Who wins if plays optimally?

31.2.9.4. Prove that if an − bn ...n, where a, b, n are positive integers, a 6= b, then an−bn

a−b

...n.

31.2.9.5*. Let N be a positive integer. We perform with N the following operation: we write every
digit of N on a separate card (we may also add, or strike out, any number of cards on which a digit 0 is
written), and then divide these cards into two piles. In each pile, we arbitrarily arrange the cards in a row
and let N1 be the sum of the two numbers obtained by reading these rows of digits. We perform the same
operation with N1, and so on. Prove that it is possible to obtain a one-digit number in ≤ 15 steps.

Grade 10
31.2.10.1. It is known that moving a unit segment of length 1 as a solid rod inside a convex polygon

M we can turn the segment by any angle. Prove that a disk of radius 1
3 can be placed inside M .

31.2.10.2. Some numbers are written in a 10× 10 table A. Denote the sum of the numbers in the first
row by s1, the sum of the numbers in the second row by s2, and so on. Similarly, the sum of the numbers
in the first column is denoted by t1, in the second column by t2, and so on. A new 10× 10 table B is filled
in by the following Rule: the lesser of the numbers si and tj is written in the j-th square of the i-th row. It
turns out that one can index the squares of table B from 1 to 100 so that the number in the k-th square is
≤ k. What is the greatest possible value of the sum of all the numbers in table A?

31.2.10.3. Prove that for some k the system




x1 + x2 + · · ·+ xk = 0,
x3

1 + x3
2 + · · ·+ x3

k = 0,
x5

1 + x5
2 + · · ·+ x5

k = 0,
. . . . . . . . . . . . . . . . . . . . . . . . .
x17

1 + x17
2 + · · ·+ x17

k = 0,
x19

1 + x19
2 + · · ·+ x19

k = 0,
x21

1 + x21
2 + · · ·+ x21

k = 1,

has a real solution.

31.2.10.4. An equilateral triangle ABC is divided into N convex polygons so that any straight line
intersects not more than 40 of them. (A line intersects a polygon if the line and the polygon have a common
point, for example, a vertex of the polygon.) Can N be greater than one million?

31.2.10.5. On the surface of a cube 100 distinct points are marked with chalk. Prove that it is possible
to place the cube onto the same place of a black desk in two ways so that the chalk imprints on the desk
would be different. (We assume that a marked point on an edge or vertex of the cube also leaves an imprint.)

Olympiad 32 (1969)

Tour 32.1
Grade 7

32.1.7.1. A white rook is chasing a black bishop across a 3 × 1969 chessboard (they move in turns
according to common rules). How should the rook play to jump the bishop if the white makes the first
move? (Cf. Problem 32.1.8.3.)

32.1.7.2. Once upon a time a castle was fortified with a triangular wall. Every side of the triangle was
trisected and towers E, F , K, L, M , N (listed here as we tour the wall clockwise) were built at the points
of trisection and in addition to towers at the vertices A, B, C of the triangle. Since then all the walls and
towers, except towers E, K, M , perished. How to recover the location of towers A, B, C from the remaining
towers?
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32.1.7.3. An international soccer tournament took place in Chile in February. The home team “Colo-
Colo” won the first place with 8 points. “Dynamo” Moscow was second with 1 point less. A Brazilian team
“Corinthians” was the third with 4 points. The fourth was a Yugoslavian team, “Crvena Zvezda”, also
with four points. Prove that from these data it is possible to exactly reconstruct how many other teams
participated in the tournament and how many points they got.

32.1.7.4. Prove that no power of 2 can end with four identical digits.

32.1.7.5. 1000 regular wooden 100-gons are nailed to the floor. We stretch a rope around the entire
system using the nails. Prove that the polygon formed by the rope has more than 99 vertices. (Cf. Problem
32.1.8.2.)

Grade 8
32.1.8.1. See Problem 32.1.7.4.

32.1.8.2. 57 regular wooden 57-gons are nailed to the floor. We stretch a rope around the entire system
using the nails. Prove that the polygon formed by the rope has more than 56 vertices. (Cf. Problem
32.1.7.4.)

32.1.8.3. A white rook is chasing a black knight across a 3 × 1969 chessboard (they move in turns
according to common rules). How should the rook play to jump the bishop if the white makes the first
move? (Cf. Problem 32.1.7.1.)

32.1.8.4. Given segment AB. Find the locus of points C such that mb = ha in 4ABC (see Fig. 68).

Figure 68. (Probl. 32.1.8.4)

32.1.8.5. Is it possible to write 20 numbers in a row so that the sum of any three consecutive numbers
is strictly positive, and the sum of all 20 numbers is strictly negative? (Cf. Problem 32.1.9.3.)

Grade 9
32.1.9.1. Find all positive integers x such that we can subtract the same nonzero digit a from each digit

of x (this means that every digit of x is not less than a) and get the number (x− a)2.
32.1.9.2. The Tolpygo Island is of the form of a polygon. There are several countries are on the island.

Each country is of the form of a triangle and every two countries bordering along (parts of) their sides have
an entire side in common, i.e., a vertex of one triangle never lies on the side of another triangle (except at a
vertex). Prove that it is possible to paint the map of the island three colors, one color for each country and
so that any two bordering countries are painted different colors.

32.1.9.3. Is it possible to write 50 numbers in a row so that the sum of any 17 consecutive numbers is
strictly positive, and the sum of any 10 consecutive numbers is strictly negative? (Cf. Problem 32.1.8.5.)

32.1.9.4. See Problem 32.1.7.4.

32.1.9.5. There are 500 towns in Tsar Dodon’s kingdom, each in the form of a regular 37-angled star,
with towers at the vertices. Tsar Dodon decides to wall the towers in a convex wall so that every segment
of the wall connects two towers. Prove that the wall will consist of not less than 37 segments, provided we
count segments on the same straight line only once.
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Grade 10
32.1.10.1. Particles emitted by a betatron move along a straight line through two identical thin hoops

situated in perpendicular planes so that each hoop passes through the center of the other. Along what
straight line should the particles move so as to be as far from the hoops as possible, i.e., so that the shortest
distance between the particle and the hoops were the longest possible?

32.1.10.2. An infinite sequence of numbers a1, . . . , an, . . . is periodical, with period 100, i.e., a1 = a101,
a2 = a102, . . . . It is known that a1 ≥ 0, a1+a2 ≤ 0, a1+a2+a3 ≥ 0, and, generally, the sums a1+a2+· · ·+an

are alternately non-negative if n is odd or non-positive if n is even. Prove that |a99| ≥ |a100|.
32.1.10.3. A pack of cards with their backs down is arranged in a row. If two cards of the same suit

are next to one another, or have just one card between them, then the Rule allows us to remove the extreme
left one. Besides, the Rule allows us to add any number of cards from other packs to the right hand side of
the row. Prove that it is possible to add or remove cards so that in the end only 4 cards are left.

32.1.10.4. Is there a real number h such that [h · 1969n] is not divisible by [h · 1969n−1] for any positive
integer n?

32.1.10.5. Given square ABCD, find the locus of points M such that ∠AMB = ∠CMD.

Tour 32.2
Grade 7

32.2.7.1. m and n are two positive integers. All different divisors of m — the numbers a, b, . . . , k —
and all different divisors of n — the numbers s, t, . . . , z — are written out (m, and n, and 1 are included).
It turns out that

a+ b+ · · ·+ k = s+ t+ · · ·+ z

and
1
a

+
1
b

+ · · ·+ 1
k

=
1
s

+
1
t

+ · · ·+ 1
z
.

Prove that m = n.

32.2.7.2. We strike out two consecutive digits a and b (a preceding b) of the number

N = 123456789101112 . . . 9989991000

and replace them with the number a + 2b; the number a may be an unwritten zero if b is the first digit of
N . (Clearly, there are many ways to perform this operation.)

The same operation is repeated with the numbers obtained, and so on. (For example, in one step the
numbers 218307, 38307, 117307, 111407, 11837, 118314 may be obtained from 118307.) Prove that several
application of this operation turn the given number into 1.

32.2.7.3. A crook acquired a square lot, fenced it in and got permission from the credulous president
of his collective farm to perform a few times the following operation: draw a straight line through any two
points of the fence, destroy the part of the fence between these two points on one side of the line, and build
a new part of the fence symmetric to the destroyed part with respect to the line. Can the crook increase the
area of his patch with such manipulations? (See Fig. 69)

Figure 69. (Probl. 32.2.7.3)
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32.2.7.4. Two players play the following game. Every player, in turn, chooses 9 numbers in the sequence
1, 2, 3, . . . , 100, 101 and strikes them out. After eleven turns there are two numbers left. The second player
then pays the first one the difference between the two numbers in roubles. Prove that the first player can
always win at least 55 roubles, no matter how the second one plays.

Note. Students who play this game will be fired from the school.

32.2.7.5. A pearl of radius 3 mm is baked inside a round pudding of radius 10 cm. The Rule allows us
to cut the pudding along a straight line with a sharp knife into two (equal or unequal) parts. If the pearl is
not found in one cut, (does not occur under the knife), one of the parts may be cut again; if this does not
help, it is allowed to cut one of the three obtained parts and so on. Prove that it is possible not to find the
pearl after 32 cuts, no matter how they are made. Prove that it is possible to make 33 cuts so that the pearl
will be found, no matter where it is.

Grade 8
32.2.8.1. See Problem 32.2.7.2.

32.2.8.2. A white knight is on square a1 of a chessboard. Two players take turns daubbing one square
of the chessboard at a time with bauxite glue. They must do this in such a way that the knight could move
according to usual rules onto any clean square without getting stuck. The loser is the player who cannot
make a move. Who wins provided both play optimally?

32.2.8.3*. Two regular pentagons have one common vertex. The vertices of both pentagons are num-
bered clockwise 1 to 5, the number of the common vertex being 1. The vertices with the same numbers are
connected by straight lines. Prove that these four lines meet at one point. (See Fig. 70)

Figure 70. (Probl. 32.2.8.3)

32.2.8.4. Finite sequences of positive integers are composed so that every next number is greater than
the square of the preceding one, and the last number of each sequence is equal to 1969 (sequences may have
different lengths). Prove that there are fewer than 1969 different such sequences.

32.2.8.5*. 100 cubes are arranged in a row, 77 black and 23 white among them. They are arranged
approximately uniformly, i.e., if a string of consecutive cubes is marked at one place of the row and the same
length is then marked at another place (the strings can intersect), then the number of black cubes in the
first string differs from the number of black cubes in the second string by not more than 1; and if the first
string begins on the left end of the row, then the number of black cubes in it is not greater than that of
the second string; and if it terminates the row, then the number of black cubes in it is not less than that
of the second string. Prove that if another string of 77 black cubes and 23 white cubes satisfies the same
conditions, then the white cubes in it occupy the same places as in the first string.

Grade 9
32.2.9.1. Two players play the following game: taking turns, they strike out one number each from the

set {1, 2, 3, . . . , 27}, until there are only two numbers left. If the sum of these numbers is divisible by 5, then
the first player wins, otherwise the second one wins. Who wins an optimally played game (the player who
begins or the second one)?
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32.2.9.2. On a plane, the circle may be traced around a coin. The Rule allows us to use this coin to
draw a circle through one or two given points that are sufficiently close to one another. Three points are
given on the plane; they can be covered by the coin, and they are not all on one straight line or on the circle
equal to the outer circle of the coin. Using the coin construct a fourth point, such that all four points are
vertices of a parallelogram.

32.2.9.3*. There are 2n−1 different sequences of length n built of 0’s and 1’s so that for any three
sequences there exists a number p such that the p-th digit in all three sequences is 1. Prove that there is
exactly one place in each sequence that a 1 occupies.

32.2.9.4*. The time of a new presidential election is approaching in the country Anchuria, where Presi-
dent Miraflores now rules. There are 20 million voters in the country but only 1 percent supports Miraflores
(the Anchurian military). Naturally, Miraflores wants to be reelected but he wants the election to look
democratic. A “democratic vote”, according to Miraflores, is like this: all voters are divided into equal
groups; each of these groups is again divided into some number of equal groups (the groups of voters may be
subdivided at distinct stages of the election into distinct numbers of smaller subgroups); then these groups
are divided once again, and so on. A representative from each smallest group — an elector — is elected for
voting within the greater group; electors of this greater group elect a new elector for voting in the group
which is greater than this one, and so on. And, finally, representatives from the greatest groups elect the
President. Acording to the constitution, Miraflores has the right to divide all voters into the groups as
he chooses and he instructs his supporters as to how they are to vote. Is it possible for him to organize
“democratic” elections so as to be elected?

32.2.9.5. Consider a regular 1000-gon. Its nonintersecting diagonals divide it into triangles. Prove that
among these diagonals there are at least 8 of different lengths.

Grade 10
32.2.10.1. Two wizards play the following game. Numbers 0, 1, 2, . . . , 1024 are written out. The first

wizard strikes out 512 numbers of (s)he chooses. Then the second wizard strikes out 256 of the remaining
numbers. Then the first wizard strikes out 128 of the remaining numbers, and so on. The second wizard
strikes out one number during the tenth move; two numbers remain. After that the second wizard pays
the first wizard the absolute value of the difference between these numbers in roubles as the fee for the
instruction in the exciting game.

How should the first wizard play to gain as much as possible? How should the second wizard play to lose
less? How much will the second wizard have to pay the first wizard if both play optimally? (Cf. Problems
32.2.7.4 and 32.2.9.1).

32.2.10.2. A rigid wire is bent to form an equilateral triangle, and its endpoints are soldered. The
Rule allows to bend a piece of the wire between any two of its points in such a way that the bent piece is
symmetrical to the original one, with respect to the straight line through these two points (if these points
coincide, then any line through them will do). This operation may be repeated. Is it possible to obtain a
regular hexagon with the same perimeter in several such operations? (Cf. Problem 32.2.7.3, See Fig. 71)

Figure 71. (Probl. 32.2.10.2)

32.2.10.3. See Problem 32.2.7.2 with the circle replaced with a sphere of radius 20 cm, and the numbers
of cuts — 32 and 33 — replaced with 65 and 66, respectively.

32.2.10.4. Numbers whose sum equals zero are written on the squares of an 8 × 8 chessboard. Every
square is then divided by a vertical and a horizontal line into four square cells. Is it possible to write numbers
in these cells so that
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a) there are zeros in all the cells along the sides of the chessboard;
b) the sums of the numbers in the four cells of each square are equal to the number written in the square

before;
c) the sums of the numbers in the four cells at every vertex of any original square is zero?

32.2.10.5*. Arrange 1969 cubes in a row, some of them (any number between 0 and 1969) white and
the rest black, so that the colors are distributed approximately uniformly (see Problem 32.2.8.5). Prove that
there exist at least 1970 different arrangements of the cubes which meet this requirement.

Olympiad 33 (1970)

Tour 33.1
Grade 7

33.1.7.1. Two black checkers are positioned on two neighboring black squares on the diagonal of an
infinite (in two perpendicular directions) chessboard. Is it possible to place several black checkers and a
white one on the chessboard so that the white checker could jump all black checkers in one move?

33.1.7.2. We number 99 cards 1 through 99. Then we shuffle the cards, lay them out with the blank
sides up and number the blank sides 1 through 99. We sum the two numbers of every card and multiply the
99 sums. Prove that the product is an even number.

33.1.7.3. Point O lies inside an equilateral triangle ABC. It is known that ∠AOB = 113◦, ∠BOC =
123◦. Find the angles of the triangle whose sides are equal to segments OA, OB, OC; see Fig. Probl.
33.1.7.3.

Figure 72. (Probl. 33.1.7.3)

33.1.7.4. A set has 100 weights, the difference between every two of them is ≤ 20 g. Prove that it is
possible to put the weights on the pans of a balance, 50 weights on each pan, so that the difference between
the weights of the pans is ≤ 20 g.

33.1.7.5. There are 1000 cottages in a town X; just one person occupies each cottage. One day, every
man moves to another cottage and every cottage has again one occupant. Prove that it is possible to paint
all 1000 cottages blue, green or red so that, for every person, the color of his/her new new cottage is distinct
from the color of the old cottage.

Grade 8
33.1.8.1. See Problem 33.1.7.2.
33.1.8.2. The circle is inscribed in pentagon ABCDE whose sides are integer numbers and AB = CD =

1. Find the length of the segment BK, where K is the tangency point of BC with the circle.
33.1.8.3. There are 16 black points on a rectangular piece of paper. We connect a pair of points by the

segment. Consider a rectangle one of whose diagonals is this segment and whose sides are parallel to the
sides of the paper. We paint the rectangle red (black points are visible through the red paint). We do so
with every pair of points and get a painted figure on the paper.

How many sides can the figure have for various positions of the points?
33.1.8.4. Each pan of a balance has k weights, numbered from 1 to k. The left pan is heavier. It turns

out that if we interchange the places of any two weights with the same number, then either the right pan
becomes heavier or the two pans reach an equilibrium. For what k this is possible?
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33.1.8.5. 12 players took part in a tennis tournament. It is known that every two of them played with
one another only once and that there was no player who was always beaten. Prove that among these 12
there are players A, B, and C such that B was beaten by A, C by B, and A by C.

Grade 9
33.1.9.1. 113 kings lived each in his own palace along a straight road. Every morning one of the kings

gave a reception which all the others attended, and every evening the servants transported the kings back
home. In this way they lived for a year without doing anything else and lieve of absence. Prove that during
this year one of the kings who lived at one of the road’s ends collected the biggest milage.

33.1.9.2. What is the greatest number of black checkers that one can place on on black squares of an
8× 8 checker-board so that a white checker can jump all of them in one move without becoming a king?

33.1.9.3. A given 999-digit number is such that erasing all but any 50 of its successive digits yields
a number (that may begin with zeroes or just be zero) divisible by 250. Prove that the given number is
divisible by 2999.

33.1.9.4. Construct triangle 4ABC given the radius of the circumscribed circle and the bisector of
angle ∠A, and knowing that ∠B − ∠C = 90◦.

33.1.9.5. A wise cockroach who cannot see farther than 1 cm decided to find the Truth. The latter is
located at a point D cm away from the cockroach. The cockroach can move step by step, each step not
longer than 1 cm, and after each step the cockroach is told whether (s)he is closer to the Truth or not. The
cockroach remembers everything, in particular, the directions of his/her steps. Prove that (s)he can find the
Truth taking not more than 3D

2 + 7 steps.

Grade 10
33.1.10.1. Given 19 weights, each of an integer mass (in grams) that does not exceed 70 grams, prove

that it is impossible to compose more than 1230 different masses of these weights.

33.1.10.2. Two non-intersecting circles O1 and O2 are inscribed into angle ABC. Denote by M the
tangent point of O1 and BA, and by P the tangent point of O2 and BC. Prove that the chords that circles
O1 and O2 intercept on straight line MP are of equal length. (See Fig. 73)

Figure 73. (Probl. 33.1.10.2)

33.1.10.3. We strike out the first digit of the number 21970 and add it to the obtained number. We
perform the same operation with the resulting number, and so on, until we get a 10-digit number. Prove
that this 10-digit number has two identical digits.

33.1.10.4. Given 200 points on a plane, no three of which are on the same straight line, find whether it
is possible to number these points 1 to 200 so that every two of the hundred straight lines through points 1
and 101, 2 and 102, . . . , 100 and 200 intersect.

33.1.10.5. There are crosses in some of the squares of a 100 × 100 table. It is known that there is at
least one cross in every row and in every column. Prove that it is possible to mark 10 rows and 10 columns
so that if we erase all crosses in the marked rows and columns, at least one cross will still be left in every
unmarked row and column.
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Tour 33.2
Grade 7

33.2.7.1. Prove that if a positive integer k is divisible by 999 999 999, then there are more than 8 non-zero
digits in its decimal expression.

33.2.7.2. 100 points are marked on a circle of radius 1. Prove that it is possible to find a point on the
circle such that the sum of the distances from it to all the other marked points is greater then 100.

33.2.7.3. In a park, 6 narrow alleys of equal length are arranged as the sides and medians of a square.
A boy Kolya is running away from his Mother and Father along these alleys. All three can see each other at
all times. Can the parents catch the boy if he runs three times faster than any of his parent?

33.2.7.4. A straight cut divides a square piece of paper into two parts. Another straight cut divides
one of the parts into two parts. One of the three pieces of paper obtained is again cut into two parts along
a line, and so on. What least number of cuts must one do in order to obtain 73 various (perhaps, equal)
30-gons? (Cf.Problem 33.29.4.)

33.2.7.5. King Louis distrusted some of his courtiers. He made a full list of his courtiers and told every
one of them to keep an eye on one of the rest. The first one was to spy on the courtier who was spying on
the second, the second one was to spy on the one who was spying on the third, and so on, the penultimate
one was spying on the courtier who was spying on the last, and the last was spying on the one who was
spying on the first. Prove that King Louis had an odd number of courtiers.

Grade 8
33.2.8.1. There are n points inside a circle of radius 1 m. Prove that there exists a point inside the

circle or on its perimeter such that the sum of the distances between it and all the other points is not less
than n m. (Cf. Problem 33.2.7.2).

33.2.8.2. A monkey ran away from its cage in a small zoo. Two guards are trying to catch it. Both
of the guards and the monkey obey The Rule and run only along the paths. There are 6 straight paths in
the zoo: 3 long paths form an equilateral triangle, 3 shorter ones connect the midpoints of its sides. Every
moment the monkey and the guards can see each other. At the beginning the guards are at one vertex of
the triangle and the monkey at another one. Can the guards catch the monkey if the monkey runs three
times faster than the guards? (Cf. Problem 33.2.7.3.)

33.2.8.3. In a park grow 10 000 trees. They had been square-cluster1 planted in 100 rows with 100 trees
in each row. What maximum number of these trees can one cut down under the following Rule: standing
on any stump, one should be unable to see any other stump behind the trees? The trees are considered to
be sufficiently thin.

33.2.8.4. On a roll of paper tape there are written 80 non-zero digits. We cut the tape across into
several strips so that there is more than one digit on each strip. Then we add the numbers formed by the
digits on each strip. Prove that there exist two distinct ways of cutting the tape to get equal sums.

33.2.8.5. A flat corridor of width 1 m is of the shape of letter Γ and infinite in both directions. There
is a flat piece of rigid wire of the form of a nonclosed brocken line. Prove that if the distance between the
endpoints of the wire is > 2 + 2

√
2 m, then it is impossible to carry the wire along the whole length of the

corridor without tilting. Cf. Problem 33.2.9.2.

Grade 9
33.2.9.1. A toy railroad has n components each in the form of a quarter of a circle with radius 10 cm.

Their endpoints are joined in succession so that they fit to form a smooth track. Prove that it is impossible
to construct a railroad that would begin and end in the same place, with its first and the last components
forming an angle of 0, as shown on Fig. 74.

33.2.9.2. A flat infinite L-shaped corridor is of width 1 m. What is the greatest possible distance
between the endpoints of a length of rigid wire (not necessarily straight but flat) such that it is possible to
pull the wire through the corridor without tilting? (See Fig. 75)

33.2.9.3. There are plus signs in all squares of a 100× 100 table. The Rule permits to simultaneously
change the signs in all squares of any one row or column. Is it possible to get 1970 minus signs under the
Rule?

1A method of planting advocated by the then ex-leader of the Soviet Union, N. Khrushchev, as the most advanced and
best suited to overtake America in agricultural production. The method was abolished. (Perhaps, unwisely?)
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Figure 74. (Probl. 33.2.9.1) Figure 75. (Probl. 33.2.9.2)

33.2.9.4. A straight line cuts a square piece of paper into two parts. Another straight line cuts one of
the parts into two parts. One of the three pieces of paper obtained is again cut into two parts along a line,
and so on. What least number of lines must be drawn in order to obtain 100 various (perhaps, (perhaps,
identical) 20-gons? Cf. Problem 33.2.7.4.

33.2.9.5. Three spiders and a wingless fly are crawling along the edges of a wire cube. The top speed
of the fly is three times that of the spiders. At the beginning, all spiders sat at one vertex of the cube and
the fly at the opposite vertex. Can the spiders catch the fly? (The spiders and the fly see each other at all
times.)

Grade 10
33.2.10.1*. A 19-hedron is circumscribed around a sphere of radius 10. Prove that on the surface of

the polyhedron there are two points with the distance between them ≥ 21.
33.2.10.2. Prove that if an integer K is divisible by 10 101 010 101, then there are at least 6 non-zero

digits in the decimal expression of K.
33.2.10.3*. See Problem 33.2.9.5, where two spiders are chasing a fly and all have the same top speed.
33.2.10.4. Given an integer n > 1970, prove that the sum of the remainders after division of 2n by 2,

3, 4, . . . , n is greater than 2n.
33.2.10.5. Merlin has two 100 × 100 tables; one of them is blank, and on the other table some magic

numbers are written. The blank table is nailed to a rock at the entrance to his cave, and the magic one is
nailed to a wall inside the cave. You may outline any square (1× 1, 2× 2, . . . , or 100× 100) on the blank
table, at any place on the table but only along the lines, and for a shilling Merlin will tell you the sum of
the numbers of the corresponding square in the magic table. What is the least amount of money one needs
to learn the sum of the numbers on the main diagonal of the magic table?

Additional set (Pythagoras’ Day)
Grade 7

33.D.7.1. We multiply the number 1234567 . . . 1000 (juxtaposed are all natural numbers 1 to 1000) by
a number from 1 to 9, and strike out all 1’s in the product. We multiply the number obtained by a nonzero
one-digit number once again, and strike out the 1’s, and so on, many times over. What is the least number
one can obtain in this manner?

33.D.7.2. A 13×13 m2 hall is divided into squares with sides of 1 m. The Rule requires that rectangular
rugs of arbitrary sizes be placed on the floor so that their sides lie on the sides of the squares; in particular,
along the side of the hall. Any rug may be partially or even completely covered by other rugs but no single
rug may completely cover, or lie under, another rug (even if there are several layers between them). What
greatest number of rugs may cover the hall under this Rule?

33.D.7.3. In an ordinary game of dominoes the difference between the numbers on adjacent displayed
tiles is equal to 0. Is it possible to arrange all 28 tiles in a closed chain so that the difference throughout the
chain would be equal to ±1?

33.D.7.4. Is it possible to divide the numbers 1, 2, 3, . . . , 33 into 11 groups, three numbers in each
group, so that in any group one of the numbers is equal to the sum of the other two?
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33.D.7.5. Ali Baba tries to enter the cave. At the entrance to the cave there is a drum with four holes
in its sides. Inside the drum, next to each hole, there is a switch which has two positions, “up” and “down”.
The Rule permits Ali Baba to stick his fingers into any two holes, learn the position of their switches (by
touch) and flip them as he pleases (for example not to flip at all). Then the drum is rotated very quickly so
that after it stops it is impossible to ascertain which switches were flipped or touched last. Ali Baba may
repeat the operation up to 10 times. The door to the cave opens the moment all the switches are in the
same position. Prove that Ali Baba can get into the cave.

33.D.7.6. It is known that objects A and B cannot both fit into the picture taken by a camera at point
O if ∠AOB > 179◦. There are 1000 such cameras on a plane. All cameras simultaneously take a picture
each. Prove that among these pictures there is one photo that shows ≤ 998 cameras.

Olympiad 34 (1971)

Tour 34.1
Grade 8

34.1.8.1. A town is walled in a 1000-gon (not necessarily convex but with nonintersecting sides). A
guard stands at every vertex outside the wall. Prove that there is a guard who can see < 500 other guards.
(The guards standing at the endpoints of one side of the 1000-gon can see each other.)

34.1.8.2. A circle intersects convex pentagon ABCDE at points A1, A2, B1, B2, . . . , E1, E2; see
Fig. 76. Knowing that AA1 = AA2, BB1 = BB2, CC1 = CC2, DD1 = DD2, prove that EE1 = EE2.

Figure 76. (Probl. 34.1.8.2) Figure 77. (Probl. 34.1.9.2)

34.1.8.3. 25 teams took part in a national soccer tournament. In the end it turned out that no team
scored more than four goals in any game. What lowest place could the team from Tbilisi have gotten, if
overall it scored more goals, and was scored less goals against, than any other team?

34.1.8.4. A 100 × 100 square is drawn on a graph paper. There is a red or blue point in every square
(of the grid) so that in every column and in every row there are 50 blue and 50 red points. Let us connect
every pair of red points in adjacent squares (squares with a common side) with a red segment, and every
pair of blue points in adjacent squares with a blue segment. Prove that the number of red segments equals
the number of blue segments.

34.1.8.5. Prove that k(51 090 701) − k(21 090 701)
... 2, where k(A) is the number of digits in the decimal

expression of A.

Grade 9
34.1.9.1. Numbers a1, a2, a3, . . . , a25, where a1 = a2 = · · · = a13 = 1, and a14 = a15 = · · · = a25 = −1

are written at the vertices of a regular 25-gon. Set b1 = a1 + a2, b2 = a2 + a3, etc., b24 = a24 + a25,
b25 = a25 + a1, and replace a1, a2, . . . , a25, with b1, b2, . . . , b25, respectively. This operation is then
repeated 100 times. Prove that one of the numbers obtained in the operation is greater than 1020.

34.1.9.2. The perimeter of a convex k-gon P (k > 6) is equal to 2. Construct a new convex k-gon M
with vertices at the midpoints of the sides of the k-gon P and prove that the perimeter of M is greater than
1; see Fig. 77.
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34.1.9.3. Consider n straight lines (n > 2) on a plane. No two lines are parallel and no three of them
meet. It is possible to rotate the plane about some point O through an angle of α < 180◦ so that each of
the lines drawn gets identical with another of lines drawn on the fixed copy of the plane. Find all values of
n for which such a system of lines exists.

34.1.9.4. Prove that no integer obtained by permutation of the digits in the decimal expression of 2k

(k > 3), is equal to 2n for n > k. (Obviously, n and k are integers here.)

34.1.9.5. Prove that there are infinitely many non-primes among the numbers [2k · √2], k = 1, 2, . . . .

Grade 10
34.1.10.1. Consider a closed broken line A1A2 . . . AnA1 in space such that every segment of it intersects

a fixed sphere at two points, and all vertices of the line are located outside the sphere. The intersection
points divide the broken line into 3n segments so that the segments at the vertex A1 are equal and the same
holds true for the vertices A2, A3, . . . , An−1. Prove that the segments at An are also equal. (Cf. Problem
34.1.8.2).

34.1.10.2. Peter has a set “Young tiler” of tiles arranged in a rectangular box so that they completely
cover the bottom of the box in one layer. Every tile has an area of 3 cm and is either a rectangle or an
L-shaped figure, see Fig. 78.

Figure 78. (Probl. 34.1.10.2)

Peter says that he lost an L-shaped tile, made a new rectangular tile instead of it, and arranged all tiles in
the box in one layer. Can one be certain that Peter is lying?

34.1.10.3. The terms a sequence x1, x2, . . . , xn, . . . satisfy the equation 3xn − xn−1 = n for any n > 1
and |x1| < 1971. Find x1971 to the nearest millionth.

34.1.10.4. All vertices of a convex n-gon and k more points inside it are marked. It turns out that any
three of these n+k points are not on the same straight line and are the vertices of an isosceles nondegenerate
triangle. What value may k take?

34.1.10.5. There is a pile of 10 million matches. Two players play a game, taking turns. A player may
take pn matches, where p is a prime and n = 0, 1, 2, 3, . . . ( for example, the first takes 25 matches, the
second takes 8, the first 1, the second 5, the first 49, and so on). The player who takes the last match is the
winner. Who wins if both play optimally?

Tour 34.2
Grade 7

34.2.7.1. Is there a number whose square begins with the digits 123456789 and ends with the digits
987654321?

34.2.7.2. Consider square ABCD, a point O inside it and perpendiculars AH1, BH2, CH3, DH4

dropped from points A, B, C, D to segments BO, CO, DO, AO, respectively. Prove that the straight lines
on which these perpendiculars lie meet at one point.

34.2.7.3. A colony of n bacteria lived in a beaker. Once, a virus got into the beaker. In the first minute
the virus destroyed one bacterium and immediately after that both the virus and the remaining bacteria
split in halves. In the second minute the two viruses destroyed two new bacteria, and then the viruses and
the remaining bacteria again split in halves, and so on. Will a moment come when no bacteria are left?

34.2.7.4. There is a mesh of 1× 1 squares. Its every node is painted one of four given colors so that the
nodes of any 1× 1 square are differently colored. Prove that there is a straight line of the grid such that the
nodes lying on it are painted only two colors.
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34.2.7.5*. On a plane stand 7 point-size searchlights. Every searchlight illuminates an angle of 90◦. If
there is a searchlight in a quadrant illuminated by another searchlight, then the first one casts a shadow, a
dark infinite ray. Prove that it is possible to arrange these 7 searchlights so that every one of them will cast
a shadow of 7 km long; see Fig. 79.

Figure 79. (Probl. 34.2.7.5)

Grade 8
34.2.8.1. Consider a 29-digit number X = a1a2...a28a29 such that for every k the digit ak occurs a30−k

times in the expression of X. (For example, if a10 = 7, then the digit a20 occurs 7 times.) Find the sum of
the digits of X.

34.2.8.2. We cut a cardboard (perhaps, non-convex) 1000-gon along a straight line. This cut brakes it
into several new polygons. What is the greatest possible number of triangles among the new polygons?

34.2.8.3. Prove that the sum of the digits of a positive integer K is not more than 8 times the sum of
the digits of the number 8K.

34.2.8.4. Take any number consisting of zeros and fours in its decimal expression. Now, we can either
divide it by 2, 3 or 5 if this division is possible without a remainder, or insert 0’s or 4’s between the digits of
this number, or write a 4 at the beginning or at the end, or write a 0 at the end. With the number obtained
we can repeat the same operations, and so on. Is it possible to obtain in this way any positive integer?

34.2.8.5. See Problem 34.2.7.2.

Grade 9
34.2.9.1. A convex 1971-gon is such that for every vertex A, every side that does not pass through A

subtends equal angles with the angle’s vertex in A. Prove that the polygon is a regular one.

34.2.9.2. See Problem 34.2.8.1.

34.2.9.3. Is it possible to divide every side of a square into 100 parts so that it would be impossible to
contour with these 400 segments any rectangle other then the initial square?

34.2.9.4. A circle is divided into n equal parts, and the numbers x1, x2, . . . , xn equal to either 1 or −1
are written at the division points so that if one turns the circle through an angle of k · 360◦

n and multiplies
the numbers at points coinciding before and after the rotation, the sum of n products thus obtained is equal
to 0 for any k = 1, . . . , n− 1. Prove that n is a perfect square. (Cf. Problem 34.2.10.1.)

34.2.9.5. Prove that it is possible to write non-zero real numbers x1, x2, . . . , xn at the vertices of a
regular n-gon so that for any regular k-gon all of whose vertices are the vertices of the original n-gon, the
sum of the numbers at its vertices is equal to 0.

Grade 10
34.2.10.1. See Problem 34.2.9.4 with additional question: what might number n be?

34.2.10.2. Given numbers a1, . . . , an and b1, . . . , bn, arrange the numbers ak in the increasing order
and numbers bk in the decreasing order. We get sets a∗1 ≤ · · · ≤ a∗n and b∗1 ≥ · · · ≥ b∗n. Prove that

max(a1 + b1, a2 + b2, . . . , an + bn) ≥ max(a∗1 + b∗1, a
∗
2 + b∗2, . . . , a

∗
n + b∗n).
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34.2.10.3. Banker and Gambler play the following hazardous game. Banker names a 1000-digit number,
A1. Upon learning this number, Gambler suggests to Banker an arbitrary number B1. This ends the first
move.

Next, Banker either subtracts the smaller number from the greater, or adds one to the other, as he
chooses, and tells the result — a number A2 — to the Gambler. Then Gambler suggests to Banker the next
number, B2. Banker repeats the same operation with numbers A2 and B2, and so on.

The game ends when Banker gets one of the following numbers: 1, 10, 100, 1000, . . . . Prove that
Gambler can always end the game suggesting not more than 20 of his numbers to Banker.

34.2.10.4. A point O and n straight lines, no two of which are parallel, are given in space. We take
the projections of O to all given straight lines. Each of the points obtained is projected to all straight lines
again, and so on. Is there a sphere containing inside it all points obtained in such a way?

34.2.10.5*. Prove that the sum of the digits of an integer N is not more than five times the sum of the
digits of 55 ·N . (Cf. Problem 34.2.8.3).

Olympiad 35 (1972)

Tour 35.1
Grade 7

35.1.7.1. Prove that if positive integers a1, a2, . . . , a17 satisfy

aa2
1 = aa3

2 = aa4
3 = · · · = aa17

16 = aa1
17,

then a1 = a2 = · · · = a17.
35.1.7.2. 1000 delegates from various countries came to a Congress. Every delegate could speak several

languages and it was known that any three delegates could have a common conversation without assistance.
(A delegate could serve as a translator for a pair of his colleagues.) Prove that it was possible to distribute
all delegates in 500 rooms, so that in every room there were 2 delegates and they can understand each other.

35.1.7.3. Every vertex of a regular 13-gon is painted either black or white. Prove that there exist three
points of the same color which are the vertices of an isosceles triangle.

35.1.7.4. Let AD and BE be medians in triangle ABC; let the angles CAD and CBE be equal to 30◦.
Prove that AB = BC. (See Problem 35.1.8.5.)

Grade 8
35.1.8.1. There are asterisks in some of the squares of an n × n graph paper. It is known that if we

strike out any set of rows (but not all of them), a column with exactly one asterisk will remain (if one does
not strike out any row there still remains a column with exactly one asterisk). Prove that if one strikes out
any number of columns (but not all of them), a row with exactly one asterisk will remain.

35.1.8.2. Given two identical L-shaped figures on a plane. Denote the endpoints of their shorter sides
by A and A′ and divide their longer sides into n equal parts by points a1, . . . , an−1; a′1 . . . , a

′
n−1. (We number

these dividing points beginning at the free endpoints of the longer sides.) Draw the straight lines Aa1, Aa2,
. . . , Aan−1 and A′a′1, A

′a′2, . . . , A′a′n−1 and denote the intersection point of lines Aa1 and A′a′1 by X1; of
lines Aa2 and A′a′2 by X2, and so on. Prove that points X1, X2, . . . , Xn−2 are vertices of a convex polygon.

35.1.8.3. A pawn got a tip that out of 1000 coins the robber brought him, 0, 1 or 2 are counterfeit.
It is known that all counterfeit coins are of the same weight different from the weight of genuine coins. Is
it possible to determine (a) whether there are counterfeit coins in this set and (b) whether their weight is
greater or less than the weight of genuine coins by weighing groups of coins three times on a balance without
using weights? (It is not necessary to determine how many counterfeit coins are there.)

35.1.8.4. Given a set of positive integers with the sum of any seven of them less than 15 and the sum
of all the numbers in the set equal to 100, determine the least possible number of elements in this set.

35.1.8.5. Let AD and BE be medians in triangle 4ABC; let each of the angles ∠CAD and ∠CBE be
equal to 30◦. Prove that triangle 4ABC is an equilateral one.

Grade 9
35.1.9.1. Angle ∠C in triangle ABC is obtuse. Points E and H are marked on side AB and points K

and M on sides AC and BC, respectively. It turns out that AH = AC, EB = BC, AE = AK, BH = BM .
Prove that points E, H, K, M lie on the same circle.
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35.1.9.2. There are numbers in all squares of an n×n chessboard: number akm stands in the intersection
of the k-th row with the m-th column. Suppose that for any arrangement of n rooks on this chessboard
such that none can be jumped by another, the sum of the numbers covered by the rooks is equal to 1972.
Prove that there exist two sets of numbers x1, x2, . . . , xn and y1, y2, . . . , yn that for every k and m satisfy
the equation: akm = xk + ym; cf. Problem 18.1.9.1.

35.1.9.3. The distance between any two trees in a forest is not greater than the difference between their
heights. None of the trees is higher than 100 m. Prove that it is possible to fence the forest with a fence 200
m long.

35.1.9.4*. Positive integers m and n are relatively prime and n < m. Which number is greater:[
1 · mn

]
+

[
2 · mn

]
+ · · ·+

[
n · mn

]
or

[
1 · n

m

]
+

[
2 · n

m

]
+ · · ·+

[
m · n

m

]
?

35.1.9.5. In town X, ten infinite parallel avenues cross perpendicular streets at equal intervals. Two
cops moving along the avenues and streets try to find a robber who, according to the Rule, can not shelter
in a house and is hiding behind the houses. If the robber turns up on an avenue or street with a cop, he is
found. The robber’s speed is not more than 10 times that of a cop and an informer tipped the cops that the
distance between them and the robber at the beginning of the chase was not greater than 100 blocks. Prove
that the cops can find the robber.

Grade 10
35.1.10.1. There are n inhabitants in town Variety. Every two of them are either friends or enemies.

Every day not more than 1 inhabitant may turn a new leaf: quarrel with all his friends and befriend all his
enemies. The Rule of Variety says: if A is a friend of B and B is a friend of C, then A is also a friend of C.
Prove that all inhabitants of the town can become friends.

35.1.10.2. Given an infinite sequence a1, a2, . . . , an, . . . , where a1 is an arbitrary 10-digit number and
each subsequent number is obtained from the preceding one by writing any digits but 9 after it, prove that
there are no fewer than two non-prime numbers in the sequence.

35.1.10.3. In tetrahedron ABCD all dihedral angles are acute and all opposite edges are equal. Find
the sum of the cosines of all dihedral angles of the tetrahedron.

35.1.10.4. Consider a non-selfintersecting non-convex n-gon P and the locus T of points inside P from
which one can see all the vertices of P . Prove that if T is nonempty and does not lie on one straight line,
then T is a convex k-gon with k ≤ n.

35.1.10.5. See Problem 35.1.9.5.

Tour 35.2
Grade 7

35.2.7.1. Consider a convex quadrilateral ABCD and point O where its diagonals meet. The perimeters
of triangles 4ABO, 4BCO, 4CDO, 4ADO are equal. Prove that ABCD is a rhombus.

35.2.7.2. Four straight lines a, b, c, d are drawn on a plane. No two of them are parallel and no three
of them meet at one point. It is known that a is parallel to one of the medians of the triangle formed by
lines b, c, and d. Prove that b is parallel to a median of the triangle formed by lines a, c, and d.

35.2.7.3. Given twelve consecutive positive integers. Prove that at least one of them is smaller than the
sum of its proper divisors.

35.2.7.4*. There are several castles in country Mara and three roads lead from every castle. A knight
leaves his castle. Traveling around the country he leaves every new castle via the road that is either to the
right or to the left of the one by which he arrived. According to The Rule the knight never takes the same
direction (right or left) twice in a row. Prove that some day he will return to his own castle.

35.2.7.5. A straight line intersects sides AB and BC of triangle ABC at points M and K, respec-
tively. Knowing that the area of triangle MBK is equal to the area of quadrilateral AMKC, prove that

MB +BK
AM + CA+KC ≥

1
3 .

Grade 8
35.2.8.1. See Problem 35.2.7.1.

35.2.8.2. Numbers a, b, c, d, e and f are positive integers such that a
b >

c
d >

e
f and af − be = 1. Prove

that d ≥ b+ f .
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35.2.8.3. A town of Nikitovka had only two-way traffic. Repairs of all its streets took two years. During
the first year some of the streets were turned into one-way streets. The next year the two-way traffic was
reestablished on these roads whereas all other roads became one-way roads. The repairs were made under
strict adherence to the following Rule: one should be able to drive from any point of the town to any other
at all times during the repairs. Prove that it is possible to introduce a one-way traffic throughout Nikitovka
so that one could still drive from any point of the town to any other point.

35.2.8.4. Let I(x) be the number of irreducible fractions a
b , where both a and b are positive integers

such that a ≤ x and b ≤ x. For example, I
(

5
2

)
= 3 and the corresponding fractions are 1

2 ; 1; 2. Find the
sum:

I(100) + I
(

100
2

)
+ I

(
100
3

)
+ · · ·+ I

(
100
99

)
+ I

(
100
100

)
.

35.2.8.5. See Problem 35.2.9.5 for 300 straight lines and 100 triangles.

Grade 9
35.2.9.1. All sides of a pentagon are of the same length and each of its angles is less than 120◦. Prove

that all its angles are obtuse.

35.2.9.2. See problem 35.2.8.2.

35.2.9.3*. The streets of town M form a regular square net of 20×20 blocks. There are subway stations
at some corners. It is known that one can get to a subway station from any point in the town passing not
more than two blocks along the streets. What is the least number of subway stations in the town?

35.2.9.4*. Are there any rational numbers a, b, c, d satisfying for a positive integer n the equation

(a+ b
√

2)2n + (c+ d
√

2)2n = 5 + 4
√

2 ?

35.2.9.5*. 3000 straight lines are drawn on a plane, no two of them are parallel, and no three of them
meet at the same point. These lines divide the plane into several parts. Prove that among these parts there
are at least a) 1000 triangles; b*) 2000 triangles.

Grade 10
35.2.10.1*. Consider plane P and triangle ABC, not on this plane, see Fig. 80. Triangle A1B1C1 is a

perpendicular projection of triangle ABC to P . Prove that triangle A1B1C1 can be completely covered by
a triangle equal to triangle ABC.

Figure 80. (Probl. 35.2.10.1)

35.2.10.2. Given two sets of numbers x1, x2, . . . , xn and y1, y2, . . . , yn such that

x1 > x2 > . . . > xn > 0, y1 > y2 > . . . > yn > 0;

and

x1 > y1, x1 + x2 > y1 + y2, . . . , x1 + x2 + . . . xn > y1 + y2 + . . . + yn,

prove that for any positive integer k we have

xk
1 + xk

2 + · · ·+ xk
n > yk

1 + yk
2 + · · ·+ yk

n.
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35.2.10.3. Numbers 1, 2, 3, . . . , 400 are written on 400 cards, one on each card. Players A and B play
the following game. Player A selects any 200 cards (the first set) and gives the rest (the second set) to B.
Then B takes 100 cards from each set and gives the rest to A. Thus, both players once again have 200 cards.
The end of the first move.

Then A again takes 100 cards from each set and gives the rest to B, and so on. After B has moved for
the 200-th time, both players count the sum of the numbers on their cards, S(A) and S(B); and A pays B
the difference S(B)− S(A). What greatest amount of money can B get if both play optimally?

35.2.10.4. Arrange all rational numbers between zero and one whose denominators do not exceed n in
increasing order. Let irreducible fractions a

b and c
d be two consecutive such numbers. Prove that |bc−ad| = 1

whatever n.
35.2.10.5*. There is a positive integer in every square of an 8× 8 chessboard. The Rule allows one to

take any square of size 3× 3 or 4× 4 and increase all numbers in it by 1 to ensure that the numbers in all
squares are divisible by 10. Is this always possible after several such operations?

Olympiad 36 (1973)

Tour 36.1
Grade 8

36.1.8.1. There are several countries on a square island. Is it possible to divide these countries into
smaller ones without creating new intersection points of their borders, and so that the map of the island
could be painted two colors?

36.1.8.2. Can a number whose decimal expression consists of 600 copies of figure 6 and several zeros be
the square of a positive integer?

36.1.8.3. Consider five points in a plane, no three of which lie on the same straight line and no four of
which are on the same circle. Prove that two of these points may be selected so that they lie on both sides
of the circle passing through three other points.

36.1.8.4. Prove that the equation 1
x + 1

y = 1
p , where x, y are positive integers, has exactly 3 solutions if

p is a prime and the number of solutions is greater than three if p > 1 is not a prime. We consider solutions
(a, b) and (b, a) for a 6= b as distinct.

36.1.8.5. On a plane, in three vertices of a square sit three grasshoppers. At some moment the grasshop-
pers begin playing a game of leap-frog according to the following Rule: they leap over each other so that if
grasshopper A leaps over grasshopper B, then after the jump it is at the same distance from B as before
and on the same line. Is it possible for any of the grasshoppers to reach the fourth vertex of the square after
a few jumps?

Grade 9
36.1.9.1. The area of a quadrilateral with vertices on the sides of a parallelogram is equal to half the

area of the parallelogram. Prove that at least one of the quadrilateral’s diagonals is parallel to a side of the
parallelogram.

36.1.9.2. A square is divided into convex polygons. Prove that it is possible to divide them into smaller
convex polygons so that each of these new ones has an odd number of adjacent polygons (with a common
side).

36.1.9.3. The value of a polynomial P (x) with integer coefficients is equal to 2 at three integer points.
Prove that there exists no integer point at which the polynomial is equal to 3.

36.1.9.4. In the city of X one can get to any subway station from any other. Prove that it is possible
to close one of the stations for repairs and not let trains pass through it but still enable people to get to any
of the remaining stations from any other.

36.1.9.5. The faces of a cube are numbered 1, 2, . . . , 6 so that the sum of the numbers on every pair of
opposite faces is equal to 7. There is a 50× 50 chessboard whose squares are equal to the faces of the cube.
The cube rolls from the lower left corner of the chessboard to its upper right corner. The Rule allows it to
move only to the right or upwards (not to the left or downwards). The cube prints the numbers painted
on its faces in every square of the chessboard that a face touches as the cube rolls. What is the greatest
possible sum of the numbers printed and what is the least possible one? (The figure 6 printed upside down
still counts as 6, not 9!)
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Grade 10
36.1.10.1. We factor a positive integer k into its prime factors: k = p1 · p2 · · · · · pn−1 · pn and set

f(k) = p1 + p2 + · · · + pn−1 + pn + 1. We perform the same operation f with f(k), and so on. Prove that
the resulting sequence of numbers k, f(k), f(f(k)), . . . eventually becomes a periodic one.

36.1.10.2. See Problem 36.1.9.1.
36.1.10.3. At some integer points a polynomial P (x) with integer coefficients takes values 1, 2 and 3.

Prove that there exists not more than one integer at which the polynomial is equal to 5.
36.1.10.4. Prove that every convex polyhedron has two faces with the same number of sides.
36.1.10.5. A control panel of N switches and a board with N bulbs are on the sides of a “black

box”. By switching consecutively all possible combinations of the switches we consecutively light all possible
combinations of the bulbs. The state of the panel of lights directly depends on the state of the switches on
the control panel. It is known that when one switch is flipped, exactly one bulb lights up or goes off. Prove
that the state of each bulb depends on exactly one switch (for every bulb its own switch).

Tour 36.2
Grade 7

36.2.7.1. A four-digit number is subtracted from a number composed of the same digits in reverse order.
Can the difference be equal to 1008?

36.2.7.2. Consider an acute triangle ABC and discs centered at the vertices of the triangle with their
radii equal to heights dropped from respective vertices. Prove that every point of the triangle is covered by
at least one disc.

36.2.7.3. A 100× 100 piece of graph paper is painted 100 different colors. Every unit square of the grid
is either painted one of the colors or not painted at all. A coloring will be called regular if no column and no
row has two squares of the same color. Is it possible to paint this piece of paper regularly so that all squares
are painted if initially there are a) 1002 − 1; or b) 1002 − 2; or c) 100 regularly painted squares?

36.2.7.4. See Problem 36.2.8.3 a) below.

Grade 8
36.2.8.1. There is an ink blot on a piece of paper. For every point of the blot consider its minimal and

the maximal distance to the boundary of the blot. The greatest of all minimal distances and the least of
all maximal distances are selected and compared. What is the shape of the blot if these two numbers are
equal? (See Fig. 81)

Figure 81. (Probl. 36.2.8.1)

36.2.8.2. See Problem 36.2.7.3 replacing 100 with an arbitrary n.
36.2.8.3. At the center of a square stands a cop and at one of the square’s vertices stands a robber.

The Rule allows the cop to run anywhere in the square and even digress outside its limits, while the robber
can only move along the square’s sides. For each of the following ratios of the cop’s top speed to that of the
robber a) 1/2; b) 0.49; c) 0.34; d) 1/3, prove that the cop can run so as to be on the same side as the robber
at some moment.

36.2.8.4. Prove that it is possible to place an equilateral triangle into a convex equilateral (but not
necessarily regular) pentagon, with sides equal to the sides of the triangle, so that they have one side in
common and the entire triangle is inside the pentagon.
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Grade 9
36.2.9.1. The decimal expression of a 100-digit number consists of 1’s and 2’s. The Rule allows one to

select arbitrarily 10 consecutive digits of which the first five may change places with the second five. Two
numbers will be called similar if one can be obtained from the other one in several such operations. What
greatest number of such 100-digit numbers can be selected so no two of them are similar?

36.2.9.2. A closed non-selfintersecting broken line is drawn on an infinite chessboard along the sides
of its squares. There are K black squares inside the broken line. What is the greatest area of the figure
bounded by the broken line?

36.2.9.3. See Problem 36.2.10.1 for m = 5.
36.2.9.4*. Two 1’s are situated at the endpoints of a line segment. The first move is to insert their

sum — the number 2 — between them. Next move is to insert between every two adjacent numbers their
sum, and so on, 1 000 000 times; see Fig. 82. How many times will the number 1973 be written during this
process?

Figure 82. (Probl. 36.2.9.4)

36.2.9.5*. See Problem 36.2.8.3. Let the robber’s top speed be 2.9 times that of the cop. Is it possible
for the cop to arrive on the same side with the robber?

Grade 10
36.2.10.1. Let m and n be positive integers ≥ 2. Prove that there is a positive integer k such that(

n+
√
n2 − 4
2

)m

=
k +
√
k2 − 4
2

.

36.2.10.2. Prove that the angles between every two bisectors of planar angles of a trihedral angle are
either all acute, or all obtuse, or all right ones.

36.2.10.3. 12 painters live in a commune of 12 red and white houses along a ring-shaped road. Every
month one of the painters leaves his or her house with red and white paints and goes clockwise along the
road. When (s)he sees a red house (s)he paints it white and goes further, and when (s)he sees a white house
(s)he paints it red and then goes home to wash his or her brush. Every painter only works once a year.
Prove that if at the beginning of the year there is at least one red house then at the end of a year every
house will be painted its initial color.

36.2.10.4. See Problem 36.2.9.1.
36.2.10.5. A lion runs over a circular circus ring of radius 10 m. Moving along a broken line he covers

30 km. Prove that the sum of the angles of all of the lion’s turns is not less than 2998 radians.

Olympiad 37 (1974)

Tour 37.1
Grade 9

37.1.9.1. Prove that the number 100...001 with 21974 + 21000 − 1 zeros is not a prime.
37.1.9.2. Prove that it is impossible to place two triangles, each of area greater than 1, into a disc of

radius 1 so that they would not overlap.
37.1.9.3. Two identical gears have 32 teeth each. One of the gears was placed atop the other one so

that their teeth aligned. Then 6 pairs of corresponding teeth were sawed off from both gears. Prove that it
is possible to rotate one gear relative the other one so that in the places where teeth of one gear are missing
there will be teeth of the other gear. (Cf. Problem 37.1.10.3.)
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37.1.9.4. Prove that if it is possible to construct a triangle from segments of lengths a, b and c, it is
also possible to construct a triangle from segments of lengths 1

a + c , 1
b + c , 1

a + b .

37.1.9.5. A convex polygon has the following property: if all straight lines on which its sides lie are
moved outwards by a distance of 1, then the straight lines in their new positions form a new polygon similar
to the original one, with the proportional parallel sides. Prove that it is possible to inscribe a circle into the
original polygon.

Grade 10
37.1.10.1. See Problem 37.1.9.4.

37.1.10.2. Prove that for any 13-gon there exists a straight line which contains exactly one of its sides
but for any n > 13 there exists such an n-gon for which this does not hold.

37.1.10.3. Two identical gears have 92 teeth each. One of the gears was placed atop the other one so
that their teeth aligned. Then 10 pairs of corresponding teeth were sawed off from both gears. Prove that it
is possible to rotate one gear relative the other one so that in the places where teeth of one gear are missing
there will be teeth of the other gear. (Cf. Problem 37.1.9.3.)

37.1.10.4. Suppose we mark all vertices and centers of the faces of a cube and draw all diagonals of its
faces. Is it possible, moving along the diagonals, to pass every marked point only once?

37.1.10.5. See Problem 37.1.9.5.

Tour 37.2
Grade 7

37.2.7.1. Point M inside a regular hexagon with side 1 is connected with all vertices of the hexagon
thus dividing the hexagon into triangles. Prove that among the triangles there are two whose sides are not
shorter than 1.

37.2.7.2. On a straight line 100 points are fixed. Let us mark the midpoints of all segments with both
endpoints among the fixed points. What is the minimal number of marked points? (Cf. Problem 37.2.8.2.)

37.2.7.3. How many sides can a convex polygon have if its diagonals are of equal length?

37.2.7.4. A few marbles are distributed into three piles. A boy who has an access to an unlimited stock
of marbles may take one marble from every pile or add to one of the piles as many marbles from his stock
as there are already in the pile. Prove that in a few such operations the boy can make it so that there are
no marbles left in every pile.

Grade 8
37.2.8.1. See Problem 37.2.7.3.

37.2.8.2. On a straight line n points are fixed. Let us mark the midpoints of all segments with both
endpoints among the fixed points. What is the minimal number of marked points? (Cf. Problem 37.2.7.2.)

37.2.8.3. Positive integers fill in a rectangular table of 8 rows and 5 columns. In one move we may
double all numbers in one row or subtract 1 from every number in one column. Prove that it is possible to
make all the numbers in the table equal to 0 in finitely many moves.

37.2.8.4. Prove that a convex pentagon with all angles obtuse has two diagonals such that discs con-
structed on them as on diameters completely cover the pentagon.

37.2.8.5. The sum of 100 positive integers, each not greater than 100, is equal to 200. Prove that from
these integers one can select several so that their sum is equal to 100.

Grade 9
37.2.9.1. Is there a sequence of positive integers such that one can uniquely express any positive integer

1, 2, 3, . . . , as the difference of two numbers of the sequence?

37.2.9.2. Prove that in an arbitrary 2n-gon there exists a diagonal not parallel to any of its sides.

37.2.9.3*. There are several weights of (positive) integer masses. It is known that they can be divided
into K groups of equal mass. Prove that in not less than K ways one can take away a weight so that it is
impossible to divide the remaining weights into K groups of equal mass.

37.2.9.4. Given triangle ABC with AB > BC and its bisectors AK and CM , prove that AM > MK >
KC. (See Solution to Problem 28.1.9.3.)
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37.2.9.5. An a× b piece of paper is cut into rectangular strips, each one with a side of 1 cm. The cuts
are parallel to the edges of the paper. Prove that at least one of the numbers a or b is an integer.

Grade 10
37.2.10.1. See Problem 37.2.9.1.
37.2.10.2. Prove that the decimal expressions of the numbers 2n + 1974n and 1974n have the same

number of digits.
37.2.10.3. A spherical planet is surrounded by 37 point-size asteroids. An asteroid on the horizon is

invisible. Prove that at any moment of time there is a point on the surface of the planet from which an
astronomer cannot see more than 17 asteroids.

37.2.10.4. Scientists, some of whom are acquainted, come to a congress. It turns out that no two
scientists with the same number of acquaintances have any acquaintances in common. Prove that there is a
scientist who has exactly one acquaintance among the participants of the congress.

37.2.10.5. See Problem 37.2.9.5.

Olympiad 38 (1975)

Tour 38.1
Grade 10

38.1.10.1. Solve in real numbers

x2 + y2 + z2 + t2 = x(y + z + t).

38.1.10.2. The distance between the center of a disc of radius 1 cm and a point A is 50 cm. We can
symmetrically reflect point A through any straight line intersecting the disc; any point obtained may also be
reflected symmetrically through any straight line intersecting the disc, and so on. Prove that a) it is possible
to herd point A inside the disc in 25 reflections; b) it is impossible to do so in 24 reflections.

38.1.10.3. Positive integers a, b, c are such that the numbers p = bc + a, q = ab + c, and r = ca + b are
primes. Prove that two of the numbers p, q, r are equal.

38.1.10.4. The centers of the squares of an 8× 8 chessboard — 64 points — are marked. Is it possible
to separate every marked point from the rest by drawing 13 straight lines that do not intersect these points?

38.1.10.5*. Is it possible to arrange 4 lead balls and a point source of light in space so that every ray
of light from the source would end in at least one of the balls?

Tour 38.2
Grade 7

38.2.7.1. See Problem 38.2.8.1 a) where n = 100.
38.2.7.2. A convex heptagon is inscribed in a circle. It is known that three of the heptagon’s angles are

equal to 120◦. Prove that two of the heptagon’s sides are of the same length.
38.2.7.3. Kolya and Vitya play the following game. There is a pile of 31 stones on the table. The boys

take turns making moves and Kolya begins. In one turn a player divides every pile which has more than one
stone into two lesser ones. The player who after his turn leaves all piles with only one stone in each wins.
Can Kolya win no matter how Vitya plays?

38.2.7.4. In the sequence 19752 . . . every digit beginning with the fifth one is equal to the last digit of
the sum of the preceding four digits. Is it possible to find in the sequence a) strings of consecutive digits
1234? 3269? b) a second string 1975?

Grade 8
38.2.8.1. Which of the two numbers is greater:

a) 22

...
2

(n many 2’s) or 33

...
3

(n− 1 many 3’s)?

b) 33

...
3

(n many 3’s) or 44

...
4

(n− 1 many 4’s)?
38.2.8.2. See Problem 38.2.7.2.
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38.2.8.3. See Problem 38.2.7.4 with the addition: c) the set 8197?
38.2.8.4. There are two countries: Ourland and the Behind the Looking Glass, or just the Behindland.

Every town in Ourland has its “double” in the Behindland and vice versa. If some two towns A and B are
connected by a railroad in Ourland, then their doubles A′ and B′ are not connected in the Behindland, but
the doubles of two unconnected towns of Ourland are connected by a railroad in the Behindland. A girl
Alice from Ourland cannot reach town B from town A changing trains fewer than two times. Prove that her
double, Ecila, in the Behindland can get from one town to any other changing trains not more than twice.

38.2.8.5. In a soccer tournament n teams take part. Every team plays with the other one only once.
What can the greatest difference between the final scores of the team with neighboring final positions be?

Grade 9
38.2.9.1. See Problem 38.2.8.1.
38.2.9.2. See Problem 38.2.7.2.
38.2.9.3. See Problem 38.2.8.5.
38.2.9.4. In the land Mantissa towns are connected by roads. The length of any road is less than 500

km, and it is possible to get from any town to any other one driving less than 500 km. When one of the
roads was closed for repairs it turned out that it was still possible to get from any town to any other one.
Prove that in this case one can find a road between any two towns not longer than 1500 km.

38.2.9.5*. Is it possible to cut a convex polygon into a finite number of non-convex quadrilaterals? (See
Fig. 83.)

Figure 83. (Probl. 38.2.9.5)

Grade 10
38.2.10.1. See Problem 38.2.8.1.
38.2.10.2. See Problem 38.2.7.3 and replace 31 with 100.
38.2.10.3. See Problem 38.2.9.4.
38.2.10.4*. Several (n > 0) distinct spotlights illuminate a circus ring in the form of a disc. Every

spotlight illuminates some convex lamina on the ring. It is known that if any of spotlights is turned off the
ring is still fully illuminated, and if 2 arbitrary spotlights are turned off the ring is not fully illuminated. For
what n this is possible?

38.2.10.5. See Problem 38.2.9.5.

Olympiad 39 (1976)

Tour 39.1
Grade 10

39.1.10.1. Find all positive solutions of the system of equations:



x1 + x2 = x2
3,

x2 + x3 = x2
4,

x3 + x4 = x2
5,

x4 + x5 = x2
1,

x5 + x1 = x2
2.
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39.1.10.2. We drew median AM , bisector BK and height CH in an acute triangle 4ABC. Let
4M ′H ′K ′ be the triangle formed by the intersection points of the three segments drawn. Can it be so
that S4M ′H′K′ > 0.499 · S4ABC? (See Fig. 84.)

Figure 84. (Probl. 39.1.10.2)

39.1.10.3. In the decimal expression of 11 + 22 + 33 + · · ·+ 999999 + 10001000, what are its a) first three
digits from the left? b) first four digits?

39.1.10.4. An astronomical searchlight can illuminate an octant. The searchlight stands at the center
of a cube. Is it possible to turn the searchlight so that it will not illuminate any of the cube’s vertices?

39.1.10.5. Domino tiles 1× 2 are placed on an infinite graph paper composed of unit squares. The tiles
cover all squares. Can it be so that any straight line of the graph of the paper intersects only a finite number
of tiles?

Tour 39.2
Grade 7

39.2.7.1. There are four balls, identical in appearance, of mass 101 g, 102 g, 103 g, and 104 g. The
Rule allows you to use a balance with two pans and an arrow (indicating weight on a continuous scale). The
balance can measure any weight. Find the mass of every ball in only two weighings.

39.2.7.2. Can a convex non-regular pentagon have exactly 4 sides of equal length and exactly 4 diagonals
of equal length?

39.2.7.3. Is there a positive integer n such that the sum of the digits of the number n2 is equal to 100?

39.2.7.4. Is it possible to fix finitely many points on a plane so that every fixed point has exactly 3
nearest neighboring points? (Cf. Problem 32.2.10.4.)

39.2.7.5. There are 200 distinct numbers arranged in a 10 × 20 table. The two greatest numbers of
every row are marked red and the two greatest numbers of every column are marked blue. Prove that at
least three (skoljko tochno?) numbers are marked both red and blue. (Cf. Problem 32.2.10.3.)

Grade 8
39.2.8.1. See Problem 39.2.7.3.

39.2.8.2. The length of the side of square ABCD is an integer. Line segments parallel to the square’s
sides divide it into smaller squares; the lengths of the sides of the smaller squares are also integers. Prove
that the sum of the lengths of all segments is divisible by 4.

39.2.8.3. See Problem 39.2.9.2.

39.2.8.4. See Problem 39.2.7.5.

39.2.8.5. See Problem 39.2.10.4.

Grade 9
39.2.9.1. Is there an integer n such that n! terminates with the digits 1976000...000 (the number of

zeroes is not specified)? (I.e., if you find such an n for any number of zeros, you have answered in affirmative,
otherwise you have to prove that whatever number of zeros, there is no such n.)
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39.2.9.2. On the spherical Sun finitely many circular spots are discovered. Each spot covers less than
half of the Sun’s surface. The spots are considered to be closed (i.e., a spot’s boundary belongs to it) and
they neither intersect nor touch one another. Prove that on the Sun there are two diametrically opposite
points not covered by the spots. (See Fig. 85.)

Figure 85. (Probl. 39.2.9.2)

39.2.9.3*. Prove that there exists a positive integer n greater than 1000 such that the sum of the digits
in the decimal expression of 2n is greater than same of 2n+1.

39.2.9.4. There are no zeros in the decimal expression of a given number N . If two identical digits or
two identical two-digit numbers neighbor in the decimal expression of N , we may strike them out. Besides,
we are allowed to insert two identical neighboring digits or two identical neighboring two-digit numbers into
any place in the decimal expression of N . Prove that with such operations we can obtain from N a number
less than 109.

39.2.9.5*. On a table, there is a vast piece of graph paper (the side of each square of the grid being 1
cm). There is also an unlimited number of 5-kopek coins of radius 1.3 cm. Prove that it is possible to put
the coins on the paper so that they cover all nodes of the graph but do not overlap.

Grade 10
39.2.10.1. Is there a positive integer A such that AA is a perfect square?

39.2.10.2. Is there a convex 1976-hedron such that for an arbitrary arrangement of arrows, one on each
edge, the sum of the vectors the arrows represent is not equal to ~0?

39.2.10.3. There are 200 different numbers arranged in a 10× 20 table. The three greatest numbers of
each row are marked red, and the three greatest numbers of each column are marked blue. Prove that at
least 9 numbers are marked both red and blue. (Cf. Problem 39.2.7.5.)

39.2.10.4. On a plane, there are fixed several (finitely many) points. For every fixed point A consider
the shortest distance r from A to any other fixed point; a fixed point at distance r from A is called a neighbor
of A. Prove that there is a fixed point with not more than three neighbors. (Cf. Problem 39.2.7.4.)

39.2.10.5. Every point in space is painted one of five given colors, and there are fixed 5 points painted
different colors. Prove that there exists a straight line all whose points are painted not less than three colors,
and a plane all whose points are painted not less than four colors.

Olympiad 40 (1977)

Tour 40.1
Grade 10

40.1.10.1. A sequence is determined by recurrence: x1 = 2, xn+1 =
[
3
2xn

]
for n > 1. Prove that the

sequence has an infinite set of a) odd numbers; b) even numbers.

40.1.10.2. On a table, n cardboard squares and n plastic squares are arranged. No two cardboard
squares have a common point (boundary points included). The same holds for the plastic squares. It turns
out that the set of vertices of the cardboard squares coincides with the set of vertices of the plastic squares.
Must then every cardboard square coincide with some plastic square?
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40.1.10.3*. a) Twelve thin solid wires of length 1 each are joined to form the frame of a unit cube. Is
it possible to make in a plane a hole of area ≤ 0.01, not cutting the plane into several parts, so that the
whole frame can be pulled through the hole?

b) The same question for the frame of a tetrahedron with edge of length 1.

40.1.10.4. On the real line every point with integer coordinate is painted either red or blue. Prove that
either red or blue the following property: for every positive integer K there is an infinite number of points
of this color whose coordinates are divisible by K.

Tour 40.2
Grade 7

40.2.7.1. In every vertex of a convex n-gon lies a hunter with a laser gun. All hunters simultaneously
fire at a rabbit sitting in a point O inside this n-gon. At the moment of the shot the rabbit lies down and
all hunters get killed1. Prove that, apart from O, there is no other point with the same property.

40.2.7.2. A 3 × 3 × 3 cube is made of 14 white and 13 black smaller cubes with edge 1. A stack is a
collection of three smaller cubes standing in a row in one direction: width, length or height. Could there be
an odd number of (a) white cubes or (b) black cubes in every stack?

40.2.7.3. Prove that there are more than 1000 three-tuples of positive integers (a, b, c) satisfying a15 +
b15 = c16.

40.2.7.4. 1977 nails stick out of a board. Two players make moves taking turns. In one move a player
connects two nails with a wire. Two nails previously connected may not be connected again. If a move
results in a closed chain, the player who made the move wins. Who wins if both play optimally — the first
player or the second one?

40.2.7.5. Find the minimal n such that any convex 100-gon can be obtained as the intersection of n
triangles. Prove that for a smaller n not every convex 100-gon can be obtained in this way.

Grade 8
40.2.8.1. See Problem 40.2.7.1.

40.2.8.2. See Problem 40.2.7.2.

40.2.8.3. See Problem 40.2.7.3.

40.2.8.4. See Problem 40.2.9.3 a).

40.2.8.5. See Problem 40.2.7.5.

Grade 9
40.2.9.1. In space there are n segments no three of which are parallel to one plane. For any two of

them a straight line connecting their midpoints is perpendicular to both of them. For what greatest n is this
possible?

40.2.9.2. a) Are there 6 different positive integers such that (a+ b)
... (a− b) for any two of them, a and

b?
b) The same question for 1000 numbers.

40.2.9.3. a) At the end of a volleyball tournament it turned out that for any two teams there was a
third one which had beaten both of them. Prove that the number of teams in the tournament was ≥ 7.

b) In another volleyball tournament for any three teams there was a team which had beaten all three.
Prove that the number of teams in this tournament was ≥ 15.

40.2.9.4. The vertices of a convex polyhedron in space are all situated at integral points (i.e., all three
coordinates of every vertex are integers). There are no other integral points either inside the polyhedron or
on its faces and edges. Prove that the polyhedron has not more than 8 vertices.

40.2.9.5*. Consider a polynomial P (x) with integer coefficients such that P (n) > n for any positive
integer n and such that for every positive integer N the sequence

x1 = 1, x2 = P (x1), . . . , xn = P (xn−1), . . .

has a term divisible by N . Prove that P (x) = x+ 1.

1Which serves them right: don’t get involved into such a problem.
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Grade 10
40.2.10.1. Is it possible to place an infinite set of identical discs on a plane so that any straight line on

this plane intersects not more than two discs?
40.2.10.2. See Problem 40.2.9.2 for 15 numbers.
40.2.10.3. See Problem 40.2.9.3 b).

40.2.10.4. Considr the recurrence: x1 = 2, xn+1 =
[
3
2xn

]
for n > 1. Prove that the sequence {yn =

(−1)xn}
n∈N is non-periodic.

40.2.10.5. See Problem 40.2.9.5.
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Olympiad 41 (1978)

Grade 7
41.7.1. Solve in positive integers 3 · 2x + 1 = y2.

41.7.2*. On a plane lies a plastic triangle. If it is rolled over and over its sides and at some moment
intersects its initial position, then we know that it simply coincides with its initial position. For what
triangles this is true? Indicate all types of such triangles.

41.7.3. Prove that it is possible to arrange dominoes of size 1× 2 in two layers on an n× 2m rectangle
(m,n ∈ N) so that each layer fully covers the rectangle and so that no two dominoes of different layers
coincide.

41.7.4. See Problem 41.10.2 a).

Grade 8
41.8.1. See Problem 41.9.1.

41.8.2. See Problem 41.7.2.

41.8.3. See Problem 41.7.3.

41.8.4. See Problem 41.10.2 a).

41.8.5. A 1000-digit natural number A has the following remarkable property. Any 10 of its consecutive
digits form a number divisible by 210. Prove that A is divisible by 21000.

Grade 9
41.9.1. Several points inside an n-gon are situated in such a way that inside any triangle formed by

three vertices of the n-gon there lies at least one of the points. What is the least possible number of these
points?

41.9.2. Is there a finite number of vectors a1
−→, a2
−→, . . . , an

−→ on a plane such that for any pair of distinct
vectors of this set there is another pair of vectors of the set whose sum is equal to that of the first pair?

41.9.3. See Problem 41.10.2 below.

41.9.4. In plane, consider several (finitely many) straight lines and points. Prove that there exists a
point A on the plane, which does not coincide with any of the given points, and with distance to any given
point greater than the distance to any of the given straight line.

41.9.5. There are 100 gossips in a town. Every gossip has 3 friends, also gossipy. A gossip learns some
interesting news on the first of January and tells the news to his or her three friends. On the second of
January the friends tell the news to every one of their friends, and so on. Is it possible that by the 5-th of
March not all gossips have learned the news, but that all of them will have learned it by the 19-th of March?

Grade 10
41.10.1. A white sphere has 12% of its area painted red. Prove that it is possible to inscribe a paral-

lelepiped into the sphere so that all its vertices are white.

41.10.2. A square town has 6 streets: 4 streets are the sides of the square and two are its medians. A
cop is chasing a robber in this town. If the cop and the robber arrive at the same street simultaneously, then
the robber gives in. Prove that the cop can catch the robber if the cop’s top speed is a) 3 times that of the
robber; b*) 2.1 times that.

41.10.3. See Problem 41.9.4.

41.10.4*. Prove that there exists a) a positive integer, b) an infinite set of positive integers n such that
several consequtive last digits of 2n in its decimal expression form the number n.

41.10.5*. Given 8 real numbers: a, b, c, d, e, f , g, h, prove that at least one of the six numbers ac+ bd,
ae+ bf , ag + bh, ce+ df , cg + dh, eg + fh is non-negative.

Olympiad 42 (1979)

Grade 7
42.7.1. On a plane point O is marked. Is it possible to place on the plane a) 5, b) 4 discs that do not

cover O so that any ray originating in O intersects at least two discs?
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42.7.2. There are several weights with total mass of 1 kg. The weights are numbered 1, 2, 3, . . . . Prove
that there is n such that the mass of the n-th weight is greater than 2−n kg.

42.7.3. A square is cut into rectangles. Prove that the sum of areas of the discs circumscribed around
the rectangles is not less than the area of the disc circumscribed around the square. (See Fig. 86.)

Figure 86. (Probl. 42.7.3)

42.7.4. Kolya and Vitya play the following game on an infinite graph paper. Kolya begins and taking
turns they mark nodes of the paper, one node each per move. Both must mark so that after a move all
points marked would be the vertices of a convex polygon (beginning with Kolya’s second move). The player
who cannot make such a move loses. Who wins if both play optimally?

Grade 8
42.8.1. A point O is marked on a plane. Is it possible to place on the plane a) 7 discs, b) 6 discs, that

do not cover point O, so that any ray beginning from O intersects at least three discs? (Cf.Problem 42.7.1).
42.8.2. See Problem 42.7.2.
42.8.3. A quadrilateral ABCD is inscribed in a circle with center O. Diagonals AC and BD are

perpendicular. Prove that the length of perpendicular OH dropped from the center of the circle to side AD
is equal to half the length of side BC. (See Fig. 87.)

Figure 87. (Probl. 42.8.3)

42.8.4. See Problem 42.7.3.
42.8.5. k scientists — chemists and alchemists — take part in a conference on chemistry, There are

more chemists than alchemists among the scientists. It is known that chemists always tell the truth, no
matter what they are asked, and that alchemists sometimes tell the truth and sometimes do not (lie).

A mathematician wants to know about every scientist whether the person in question is a chemist or al-
chemist. The Rule allows the mathematician ask any scientist the question: “What is such and such: chemist
or alchemist?” (referring to any scientist, including the one questioned). Prove that the mathematician can
learn what (s)he wants to know in a) 4k questions; b) 2k − 2 questions.
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Grade 9
42.9.1. Given a collection of stones. The mass of each stone is ≤ 2 kg and their total mass is equal to

100 kg. We selected a set of stones whose total mass differs from 10 kg by the least possible for this set
number d. What is the greatest value of d for every admissible collection of stones?

42.9.2*. Is it possible to represent the whole space as the union of an infinite number of pairwise skew
lines?

42.9.3*. a) Does there exist a sequence of positive integers a1, a2, a3, . . . such that none of its elements
is equal to the sum of some other ones, and an ≤ n10 for every n?

b) The same question with an ≤ n
√
n for every n.

42.9.4. See Problem 42.8.3.
42.9.5*. See Problem 42.8.5 with a new heading: c) 2k − 3 questions.

Grade 10
42.10.1. See Problem 42.9.1.
42.10.2. On a segment of length 1 several intervals are marked. It is known that the distance between

any two points from the same or different marked intervals is not equal to 0.1. Prove that the sum of lengths
of the marked intervals is not greater than 0.5.

42.10.3. A function y = f(x) is defined and is twice differentiable on segment [0, 1]. Moreover, f(0) =
f(1) = 0 and |f ′′(x)| ≤ 1 on the whole segment. What is greatest value of max

x∈[0,1]
f(x) have for all such

functions?
42.10.4. The union of several discs has an area of 1. Prove that it is possible to find several non-

intersecting discs among them with the total area > 1
9 .

42.10.5*. See Problem 42.9.5.

Olympiad 43 (1980)

Grade 7
43.7.1. Find the greatest five-digit number A in which the fourth digit is greater than the fifth; the

third greater than the sum of the fourth and fifth; the second greater than the sum of the third, fourth and
fifth; and the first greater than the sum of the other digits.

43.7.2. In every square of a rectangular graph paper stands 1 or −1. The number of 1’s is not less than
two and the number of −1’s is not less than two. Prove that there are two rows and two columns such that
the sum of the four numbers in the squares at their intersections is equal to 0.

43.7.3. Consider a convex 100-gon. Prove that the greatest number of sides of a convex polygon, whose
sides lie on diagonals of the 100-gon, is ≤ 100.

43.7.4. Three straight corridors of equal length l form a figure shown in Fig. 88. A cop and a robber
are running along the corridors. The top speed of the cop is two times that of the robber. The cop is
shortsighted and can only recognize the robber when the distance between them is ≤ r. Prove that the cop
will always catch the robber if a) r > l

3 ; b) r > l
4 . (See Problem 437.4.)

Figure 88. (Probl. 43.7.4)

43.7.5. Ten vertices of a regular 20-gon A1A2A3 . . . A20 are painted black, and 10 are painted white.
Consider the set consisting of diagonal A1A4 and all the other diagonals of the same length. Prove that
in this set the number of diagonals with two black endpoints is equal to the number of diagonals with two
white endpoints.
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Grade 8
43.8.1. Prove that if a1 ≤ a2 ≤ a3 ≤ · · · ≤ a10, then

a1 + · · ·+ a6

6
≤ a1 + · · ·+ a10

10
.

43.8.2. See Problem 43.7.2.

43.8.3. ∗ A point C is on a chord AB of circle K with center at O. Let D be the second intersection
point of K with the circle circumscribed around 4ACO. Prove that CD = CB.

43.8.4. See Problem 43.7.4.

43.8.5. See Problem 43.7.5.

Grade 9
43.9.1. Let a1 < a2 < a3 < . . . be an increasing sequence of positive integers such that an+1 ≤ 10an

for any n ∈ N. Prove that the infinite decimal fraction 0.a1a2a3 . . . obtained by writing these numbers one
after another is non-periodic.

43.9.2. There are several push buttons on a panel that controls lamps on a desk. Pressing any button
turns some lamps on the desk on or off (every button governs its own set of lamps and the sets may intersect).
Prove that the number of all possible states of the desk is equal to a power of 2.

43.9.3. On an m× n rectangular piece of graph paper there are several squares whose sides are on the
vertical and horizontal lines of the paper. It is known that no two squares coincide and no square is situated
inside another one. What is the maximal number of such squares?

43.9.4. See Problem 43.7.4 for a) r > l
5 ; b*) r > l

7 .

43.9.5*. See Problem 43.8.3.

Grade 10
43.10.1. See Problem 43.9.1.

43.10.2. See Problem 43.9.2.

43.10.3. See Problem 43.9.4.

43.10.4. One of the numbers −1, 0 or 1 is written in every square of a 1980× 1980 table. The sum of
all numbers is equal to 0. Prove that there exist two rows and two columns such that the sum of the four
numbers written in the squares of their intersections is equal to 0.

43.10.5. On a unit sphere, there are given several arcs of great circles. The sum of the length of all these
arcs is less than π. Prove that there is a plane passing through the center of the sphere and not intersecting
any of the arcs; see Fig. 89.

Figure 89. (Probl. 43.10.5)



120 MOSCOW MATHEMATICAL OLYMPIADS 1 – 59

Olympiad 44 (1981)

Grade 7
44.7.1. The remainders after divisions of a positive integer A by 1981 and 1982 are both equal to 35.

What is the remainder after division of A by 14?

44.7.2. See Problem 44.9.1 below for a 13-digit number.

44.7.3. A painter drew two identical dragons on two identical paper discs so that the first dragon’s eye
is at the center of the first disc and the second dragon’s eye is not at the center of the second disc. Prove
that it is possible to cut the second disc into two parts so that they can be put together again and the same
disc with the same dragon can be obtained but this time the dragon’s eye will be at the center.

44.7.4. Recall that [x] is the integer part of x. For a number x greater than 1, is it necessary that[√[√
x

]]
=

[√√
x

]
?

44.7.5. There are 5 identically looking weights. Their masses are 1000 g, 1001 g, 1002 g, 1004 g, and
1007 g but we do not know which mass is which. Given a balance with an arrow that shows mass in grams,
how to find the weight with mass 1000 g in three weighings?

Grade 8
44.8.1. In a pentagon, all diagonals are drawn. Which 7 angles between the diagonals or between the

diagonals and the sides should be marked so that if the angles marked are equal it would follow that the
pentagon is regular?

44.8.2. See Problem 44.7.2.

44.8.3. See Problem 44.7.3.

44.8.4. See Problem 44.7.4.

44.8.5. Given 10 positive integers a1 < a2 < a3 < · · · < a10, prove that their least common multiple is
not less than 10a1.

Grade 9
44.9.1. A number is expressed with an odd number of digits. Prove that it is possible to strike out one

of its digits so that in the number obtained, there are as many 7’s in even places as in odd places.

44.9.2. Positive integers a1, a2, . . . , an are such that each of them is not greater than its index (i.e.,
ak ≤ k), and the sum of all numbers is even. Prove that one of the sums a1 ± a2 ± a3 ± · · · ± an is equal to
zero.

44.9.3. X and Y are two convex polygons, X lies inside Y . Let S(X) and S(Y ) be the areas of the

polygons, and P (X) and P (Y ) be their perimeters. Prove that S(X)
P (X) < 2S(Y )

P (Y ) .

44.9.4*. Is it possible to divide the set of positive integers into an infinite number of infinite subsets, so
that each subset can be obtained from any other one by adding a fixed integer element-wise?

44.9.5*. 64 vertices of a regular 1981-gon are marked. Prove that there exists a trapezoid with vertices
in marked points.

Grade 10
44.10.1. A function y = f(x) is defined on the whole real line and satisfies the relation f(x + k)(1 −

f(x)) = 1 + f(x) for some k 6= 0. Prove that f(x) is a periodic function.

44.10.2. Given a positive integer p and a polynomial P (x) of degree n with leading coefficient 1 and
such that if y is an integer, then P (y) is an integer divisible by p. Prove that n! is divisible by p. (Cf.
Problems 20.1.7.2 and 20.1.8.5.)

44.10.3. Prove that the sequence xn = sin(n2) does not tend to 0 as n −→∞.

44.10.4. Inside a unit square lies a non-selfintersecting broken line of length ≥ 200. Prove that there is
a straight line parallel to one of the sides of the square that intersects the broken line in no fewer than 101
points.

44.10.5. Consider a triangle. The radius of the inscribed circle is equal to 4
3 ; the lengths of the triangle’s

heights are integers whose sum is equal to 13. Find the lengths of the triangle’s sides.
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44.10.6*. n people sit at a round table. Any two neighbors may change places. What is the least
number of times that people must change places so that in the end they all have their initial neighbors but
in the reverse order?

Olympiad 45 (1982)

Grade 7
45.7.1. At Turing Machines store Pete bought a calculator that performs the following operations: it

can calculate x+y and x−y for any numbers x and y and 1
x for x 6= 0. Pete says that he can find the square

of any positive number in not more than 6 operations on his calculator. a) If you also can, explain how. b)
Can you, moreover, multiply any two positive integers in not more than 20 operations if you are allowed to
write down intermediate results and use them during your calculations many times?

45.7.2. There are 5 points inside square ABCD. Prove that the distance between some two of them is
not greater than AC

2 .

45.7.3. At Turing Machines store Pete bought a paid calculating machine that for 5 kopeks multiplies
any number punched into it by 3 and for 2 kopeks adds 4 to any number. Pete wants to obtain the number
1981 for the least amount of money and begins with 1 which may be punched in for free. How much will his
calculations cost Pete’s parents? Same question if he wants to obtain 1982.

45.7.4. What least number of points on a plane must be selected so that among all distances between
pairs of points there should be 1, 2, 4, 8, 16, 32, 64?

Grade 8
45.8.1*. Simplify the expression:

2√
4− 3 4

√
5 + 2

√
5− 4
√

125
.

45.8.2. A rectangle is cut into 5 rectangles. Prove that there is a pair of these 5 rectangles one of which
fits completely inside the other.

45.8.3. The squares of 1, 2, 3, . . . , 1982 are juxtaposed in some order to form a number. Can the
number obtained be the square of an integer?

45.8.4. All diagonals of a convex pentagon are parallel to the opposite sides. Prove that the ratio of

every diagonal to the opposite side is equal to
√

5 + 1
2 .

45.8.5. a) Knowing that (one can easily prove this by induction)

13 + 23 + · · ·+ n3 =
(
n(n+ 1)

2

)2

,

prove that for distinct positive integers a1, a2, . . . , an the following inequality holds:

(a7
1 + a7

2 + · · ·+ a7
n) + (a5

1 + a5
2 + · · ·+ a5

n) ≥ 2(a3
1 + a3

2 + · · ·+ a3
n)2.

b) Are there some distinct positive integers a1, a2, . . . , an for which the equality is attained?

Grade 9
45.9.1. Find all integers n for which the number n2n + 1 is divisible by 3.

45.9.2. On a plane find a point such that the sum of the distances from it to four given points is minimal.

45.9.3. On a plane the points with integral coordinates are marked. Prove that there exists a circle
with exactly 1982 marked points inside it.

45.9.4. The number
A = 0.1 + 0.02 + 0.003 + · · ·+ n · 10−n + . . .

is written in the form of an infinite decimal fraction. Prove that the digits 1982 in succession do not appear
in this decimal.

45.9.5. Two sides of a convex quadrilateral are of length 1 and two other sides and both diagonals are
not longer than 1. What is the longest possible perimeter of the quadrilateral?
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Grade 10
45.10.1. a) Prove that if all edges of a regular tetrahedron subtend equal angles with a common vertex

inside the tetrahedron, then this vertex is the center of the sphere circumscribed around the tetrahedron.
b) Can the vertices of equal angles subtending the tetrahedron’s edges be outside the tetrahedron?
Note: If the vertex lies on an edge or its extension, we say that the edge subtends an angle of π or 0,

respectively.

45.10.2. a) Let a, b, c be the lengths of a triangle’s sides. Prove that

a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc+ b2ac+ c2ab ≥ 0.

b) Prove that the inequality in a) holds for any a, b, c ≥ 0.

45.10.3. Pete bought a useful calculator at the Turing Machines store: it can find xy+x+y+1 for any
real numbers x and y but cannot perform any other operations. Pete wants to write a “program” to compute
the polynomial 1 + x + x2 + . . . · · · + x1982. He regards his “program” to be the sequence of polynomials
f1(x), . . . , fn(x) such that

f1(x) = x; fn(x) = 1 + x+ · · ·+ x1982;

fi(x) for 1 < i < n is either
a constant ci that Pete can choose or

fj(x) · fk(x) + fk(x) + fj(x) + 1, where j, k < i for each i = 2, . . . , n.
a) Write Pete’s “program”.
b) Can one write a “program” for the calculator that can only perform the following operation: x, y 7→

xy + x+ y?

45.10.4. Find all positive integers n for which both 1
n and 1

n + 1 are finite decimal fractions.

45.10.5. A regular hexagon with side a is inside another regular hexagon with side 2a. Prove that the
center of the larger hexagon is inside the smaller one.

Olympiad 46 (1983)

Grade 7
46.7.1. Find all pairs of integers (x, y) satisfying the equation

x2 = y2 + 2y + 13.

46.7.2. A white plane is stained with black Indian ink. Prove that for any l there exists a line segment
of length l whose both endpoints are of the same color.

46.7.3. A positive integer begins with a 4. If this digit 4 is transplanted to the end of the number, the
resulting number is 1

4 of the original one. Find the smallest such number.

46.7.4. Two friends want to reach a nearby town. They have a bicycle for one person only. The Rule
allows any of them to leave the bicycle for the other friend at any place. Their speeds as pedestrians are u1

and u2, their speeds on bicycles are v1 and v2, respectively, and the distance between the towns is S. What
is the least least time the friends need to reach the town?

46.7.5. Is there a pentagon with sides 3, 4, 9, 11 and 13 cm, into which a circle can be inscribed?

Grade 8
46.8.1. Prove that x4 − x3y + x2y2 − xy3 + y4 > x2 + y2 for any x >

√
2 and y >

√
2.

46.8.2. Equilateral triangles ABC1, BCA1 and CAB1 are constructed outwards on the sides of triangle
ABC. Prove that AA1

−−→
+BB1
−−→

+ CC1
−−→

= ~0. (See Fig. 90.)

46.8.3. Can the square of a positive integer begin with 1983 nines in a row?

46.8.4. The numbers 1, 2, . . . , 1983 stand at the vertices of a regular 1983-gon. Any of the axes of
symmetry of the 1983-gon divides the numbers which do not stand at the vertices through which the axis
passes (if any) into two sets: on either side of the axis. Let us call an arrangement of numbers good with
respect to a given axis of symmetry if every number of one set is greater than the number symmetrical to
it. Is there an arrangement good with respect to any axis of symmetry?

46.8.5. Given five points on a circle: A1, A2, A3, A4, H. Denote the distance between H and straight
line AiAj by hij . Prove that h12 · h34 = h14 · h23.
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Figure 90. (Probl. 46.8.2)

Grade 9
46.9.1. Prove that

1
2 < x2n ± x2n−1 + x2n−2 ± x2n−3 + · · ·+ x4 ± x3 + x2 ± x+ 1

for any signs of odd powers of a real x.
46.9.2. Three circles of radii 3, 4, 5 are externally tangent to one another. The common tangent to the

first two circles is drawn through the point at which they are tangent to each other. Find the length of this
tangent contained inside the circle of radius 5.

46.9.3. Prove that 11983 + 21983 + · · ·+ 19831983 is divisible by 1 + · · ·+ 1983.
46.9.4. Twenty towns are connected by 172 airlines; not more than one airline connects two towns.

Prove that using these airlines one can fly from any town to any other (perhaps changing lines).

Grade 10
46.10.1. Let A1, B1, C1 be the points where the circle inscribed into triangle ABC is tangent to sides

BC, AC and AB, respectively. It is known that AA1 = BB1 = CC1. Prove that triangle ABC is equilateral.

46.10.2. Prove that 4m − 4n
... 3k+1 if and only if m− n ... 3k, where a) k = 1, 2, 3; b) k ∈ N.

46.10.3. After classes, the following inscription was left on a blackboard (instead of the erased numbers
we write ∗ ∗ ∗ in this book):

“Find
t(0)− t

(
π
5

)
+ t

(
2π
5

)
− t

(
3π
5

)
+ · · ·+ t

(
8π
5

)
− t

(
9π
5

)
, (∗)

where
t(x) = cos 5x+ ∗ ∗ ∗ cos 4x+ ∗ ∗ ∗ cos 3x+ ∗ ∗ ∗ cos 2x+ ∗ ∗ ∗ cosx+ ∗ ∗ ∗ cos 0 (∗∗)”

A student told his girlfriend that he could find the sum (∗) even without knowing the coefficients erased
from the blackboard in (∗∗). Is he just boasting?

46.10.4. Consider eight points in space such that no four of them lie on the same plane, and 17 segments
with both endpoints in given points. Prove that the segments form a) at least one triangle; b)* ≥ 4 triangles.

46.10.5. 13 knights from k towns (1 < k < 13) are sitting at a round table. Every knight holds a gold
or a silver goblet in his hand, and the number of gold goblets is also equal to k. Prince tells every knight
to pass his goblet to the neighbor on his right and to repeat this until a pair of knights from the same town
gets golden goblets. Prove that eventually Prince’s wish will be fulfilled and the knights will be able to pass
to refreshments.

Olympiad 47 (1984)

Grade 7
47.7.1. Some people call a bus ticket lucky if the sum of digits in its number is divisible by 7. Is it

possible for two tickets with consecutive numbers to be lucky?
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Note. In 1984 bus tickets in Moscow were numbered 000000 to 999999.
47.7.2. Paths in a zoo form an equilateral triangle with the midpoints of its sides connected. A monkey

has run away from its cage and two guards are trying to catch it. Can they catch the monkey if all three
run only along the paths, the speed of the monkey and that of the guards are equal and they all can see one
another at all times? (Cf. Problem 33.2.8.2).

47.7.3. A customer bought some goods worth 10 roubles and gave a 25-rouble note to the salesman. The
salesman did not have change at the moment and so he asked his neighbor to change the note. After they
got even and the customer had gone, the neighbor discovered that the note was counterfeit. The salesman
returned 25 roubles to his neighbor and pondered: how much money did he lose? Same question to you.

47.7.4. A parallelogram is cut out of a paper triangle. Prove that the area of the parallelogram is not
greater than half the area of the triangle. (See Fig. 91.)

Figure 91. (Probl. 47.7.4)

47.7.5. There are 10 rooks and a king on a 20 × 20 chessboard. The king is not in check and moves
along the diagonal from the lower left corner to the upper right corner. The pieces move taking turns as
follows: first the king, then one of the rooks.

Prove that no matter what the initial position of the rooks is or how they move, the king will either be
in check or bump into a rook.

Grade 8
47.8.1. Solve the equation x3√

4− x2
+ x2 − 4 = 0.

47.8.2. Every two of six computers are to be connected by one colored cable. Choose one color out of
five for each cable so that cables of five different colors would come out of each computer.

47.8.3. Prove that the sum of distances from the center of a regular heptagon to all its vertices is less
than that from any other point.

47.8.4. The sum of five non-negative numbers is equal to 1. Prove that it is possible to arrange them
in a circle so that the sum of all five products of pairs of neighboring numbers is not greater than 1

5 .

47.8.5. Cut a square into 8 acute triangles. (Cf. Problem 47.10.5 below.)
47.8.6. Is the number of all 64-digit positive integers without zeros in their decimal expression and are

divisible by 101 even or is it odd?

Grade 9
47.9.1. In a triangular pyramid 3 lateral edges are equal to one another, and the areas of three lateral

faces are equal to one another. Prove that the base of the pyramid is an isosceles triangle.
47.9.2. Is it possible to connect 13 computers in pairs with cables of twelve different colors so that 12

cables of different colors come out of each computer? (Cf. Problem 47.8.2.)
47.9.3. What is the least possible width of an infinite strip from which any triangle of area 1 can be cut

out?
47.9.4. On a circle, there are arranged n non-negative numbers whose sum is equal to 1. Prove that

the sum Sn of n products of two neighboring numbers is not greater than 1
4 . (Cf. Problem 47.8.4).

47.9.5*. Given 4 points inside a 3× 4 rectangle. Prove that there are two among the given points that
are not farther than 25

8 apart.
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47.9.6. Do there exist three non-zero digits with which the squares of an infinite number of different
integers can be expressed?

Grade 10
47.10.1. Prove (without using calculators, tables and such) that sin 1 < log3

√
7.

47.10.2. At the Olympiad 6 problems were offered. The Olympiad jury decided to assign to every
participant a positive integer according to his/her results in the Olympiad so that it would be possible
to reconstruct unambiguously the score every participant got for every problem and so that for every two
participants the greater number would be assigned to the one with the greater sum of scores. How could the
jury enumerate the participants?

47.10.3. Solve in integers 19x3 − 84y2 = 1984.
47.10.4. Let n1 < n2 < n3 < n4 < . . . be an infinite sequence of positive integers. In a kingdom there

was minted an infinite number of coins of denominations n1, n2, n3, n4, . . . kopeks.
Prove that it is possible to break the sequence at some point N so that any amount of money which can

be paid without need for change with all coins minted can in fact be paid with the coins of denominations
of n1, n2, n3, . . . , nN kopeks only.

47.10.5. A square is cut into acute triangles. Prove that there are ≥ 8 such triangles. (Cf. Problem
47.8.5).

47.10.6*. A triangle section of a cube is tangent to the sphere inscribed in the cube. Prove that the
area of the section is less than half the area of the cube’s face.

Olympiad 48 (1985)

Grade 7
48.7.1. Solve the equation xy + 1 = x+ y.
48.7.2. Given five distinct positive numbers. They can be divided into two groups so that the sums of

the numbers in these groups are equal. In how many ways can this be done?
48.7.3. The lengths a, b, c, d of four segments satisfy the inequalities 0 < a ≤ b ≤ c < d and d < a+b+c.

Is it possible to construct a trapezoidal from these segments?
48.7.4. A rabbit is sitting in the center of a square and 4 wolves are sitting in the four vertices. Is it

possible for the rabbit to run out of the square if the wolves can only run along the sides and the wolf’s top
speed is 1.4 times higher than that of the rabbit?

48.7.5. A tank of milk was brought to a store. The salesman has a balance and pans but no weights.
However, milk cans can be put on a pan and there are three identical milk cans in the store, two of which
are empty, and the third one has 1 liter of milk in it. A can holds not more than 85 l. By a weighing we
mean putting a can with milk on one balance pan and an empty can on the other pan whereupon milk is
added to the empty can until the balance is in equilibrium. How can the salesman pour 85 l of milk into one
can weighing not more than 8 times?

Grade 8
48.8.1. Solve the equation (x− y + z)2 = x2 − y2 + z2.
48.8.2. The numbers a1, a2, . . . , a1985 are the numbers 1, 2, 3, . . . , 1985 arranged in some order. Prove

that max
k

k · ak ≥ 9932.

48.8.3. A paper square Q is placed on a piece P of graph paper; the area of Q is four times that of a
little square q of the graph paper. Let a node be an intersection of lines on the paper; a node on the boundary
of Q is considered to be covered. What is the least number of nodes that Q can cover? (See Fig. 92.)

48.8.4. An infinite number of knights lined up in a row in front of Wizard. Prove that Wizard can tell
some of them to stand out of line, so that there would still be an infinite number of knights left in line, and
so that all knights in line would stand ordered with respect to their height in increasing or decreasing order.

48.8.5. Prove that if the length of every one of the three bisectors of a triangle is greater than 1, then
its area is greater than 1√

3
.

Grade 9
48.9.1. Solve the eqation

√
x− y + z =

√
x−√y +

√
z.
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Figure 92. (Probl. 48.8.3)

48.9.2. In some country there are 1985 airports. Consider the Earth to be a plane, the air routes to be
straight lines, and all pairs of distances between the airports to be distinct. From every airport an airplane
departs and lands at the airport fartherest from the place of its departure. Is it possible that as a result all
1985 airplanes arrived in 50 airports?

48.9.3. Under notations of Problem 48.8.3, suppose we know that a 2 × 2 square covers ≥ 7 nodes of
the graph plane. How many nodes (exactly) can a 2× 2 square cover?

48.9.4. Prove that it is possible to select two people from a group of 12, and then choose five more
people from the remaining 10 so that each of these five people satisfies the following condition: (s)he is
either a friend of both or of neither of the people in the pair chosen first.

48.9.5* (Leonard Euler’s problem). . Prove that any number 2n for n ≥ 3 can be expressed as 2n =
7x2 + y2, where x and y are odd.

Grade 10
48.10.1. Solve the equation

x− 49
50

+
x− 50

49
=

49
x− 50

+
50

x− 49
.

48.10.2. See Problem 48.7.3.
48.10.3. Let the “complexity” of a given number be the least possible length of a numerical sequence

(if there is one) which begins with a 0 and ends with this number, each next term being either equal to half
the preceding one or its sum with the preceding term being equal to 1. (The length of the empty sequence
is assumed to be equal to 0.) Find the number with the greatest “complexity” among all numbers of the
form m

250 , where m = 1, 3, 5, . . . , 250 − 1.

48.10.4. We have 1985 sets. Each of the sets has 45 elements, the union of any two sets has exactly 89
elements. How many elements has the union of all these 1985 sets?

48.10.5. Prove that if the distances between skew edges of a tetrahedron are equal to h1, h2, h3,
respectively, then the volume of the tetrahedron is ≥ 1

3h1h2h3.

Olympiad 49 (1986)

Grade 7
49.7.1. A quadrilateral is drawn on a transparent piece of paper. How should the paper be folded

(perhaps more than once) in order to ascertain whether the quadrilateral is a rhombus? (Cf. Problem
49.8.1.)

49.7.2. Prove that there are no numbers x, y, z satisfying the system



|x| < |y − z|,
|y| < [z − x|,
|z| < |x− y|

49.7.3. Three dwarfs live in different houses on a plane and walk with speeds 1, 2 and 3 km/h, respec-
tively. What place for their everyday meetings should they choose to minimize the sum of the times it takes
them to walk from their houses to this place (each walks along a straight line)?
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49.7.4. The product of some 1986 positive integers has exactly 1985 different prime divisors. Prove that
either one of these integers or the product of some of them is a perfect square. (Cf. Problem 49.9.4.)

49.7.5. A code lock has three buttons with numbers 1, 2, 3. The code is a three-digit number, and the
lock opens only if you press all three buttons in succession in the right order. What least number of times
must Houdini press the buttons to unlock the lock?

Grade 8
49.8.1. A quadrilateral is drawn on a transparent piece of paper. How should the paper be folded

(perhaps more than once) in order to ascertain whether the quadrilateral is a square? (Cf. Problem 49.7.1.)
49.8.2. Find all positive integers which cannot be expressed as the difference of the squares of some

positive integers.

49.8.3. Prove that if a1 = 1, an = an−1

2 + 1
an−1

for n = 2, 3, . . . , 10, then 0 < a10 −
√

2 < 10−370.

49.8.4. A square field is divided into 100 identical square plots, nine of which become overgrown with
weeds. It is known that every next year weeds begin to grow on the plots which are adjacent (have a common
side) to at least two plots overgrown with weeds the year before and only on these plots. Prove that the
whole field will never become overgrown with weeds.

49.8.5. Prove that there are no solutions to the system




|x| > |y − z + t|,
|y| > |x− z + t|,
|z| > |x− y + t|,
|t| > |x− y + z|.

Grade 9
49.9.1. Points A, B, C, D are marked on a piece of paper. A detecting device can perform two types

of operations: (a) measure the distance between two given points in centimeters; (b) compare two given
numbers. What least number of operations must be performed to ascertain whether quadrilateral ABCD is
a rectangle?

49.9.2. An ant moves at a constant speed starting from point M on a plane. Its path is a spiral that
winds around a point O and is homothetic to some part of itself with respect to this point. Is it possible for
the ant to cover its entire pass in a finite time?

49.9.3. Solve the system: 



|x| < |y − z + t|,
|y| < |x− z + t|,
|z| < |x− y + t|,
|t| < |x− y + z|.

49.9.4. A product of some 48 positive integers has exactly 10 different prime divisors. Prove that the
product of some four of these integers is a perfect square. (Cf. Problem 49.7.4.)

49.9.5. Discs of radius 1
14 and with centers at every point with integer coordinates are drawn on the

coordinate plane. Prove that any circle of radius 100 intersects at least one of the discs drawn.

Grade 10
49.10.1. See Problem 49.9.1 with rectangle replaced with square in the quastion.
49.10.2. The bisector of angle A of triangle ABC is extended until it meets (at point D) the circum-

scribed circle. (See Fig. 93.) Prove that AD > 1
2 (AB +AC).

49.10.3. Solve the equation xx4
= 4 for x > 0.

49.10.4. Prove that there are no vector solution to the system:



√
3|a| < |b− c|,
√

3|b| < |c− a|,
√

3|c| < |a− b|.
49.10.5. For y(x) = | cosx+ α cos 2x+ β cos 3x| find min

α,β
max

x
y(x).
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Figure 93. (Probl. 49.10.2)

Olympiad 50 (1987)

Grade 7
50.7.1. In March the math club held 11 meetings. Prove that if there were no meetings on weekends,

then in March there were three days in a row during which no meetings were held.
50.7.2. Prove that among any 27 different positive integers less than 100 each there are two not relatively

prime ones.
50.7.3. On a meadow shaped in the form of an equilateral triangle with side 100 m a wolf is running.

A hunter can hit the wolf if (s)he shoots from a distance not greater than 30 m. Prove that the hunter can
hit the wolf no matter how quickly it runs.

Figure 94. (Probl. 50.7.3) Figure 95. (Probl. 50.8.4)

50.7.4. Let AB be the base of trapezoid ABCD. Prove that if AC +BC = AD +BD then ABCD is
an isosceles trapezoid.

50.7.5. Ali-Baba and 40 thieves have to split a treasure of 1987 gold coins among themselves according
to the following Rule: the first thief splits the whole treasure into two parts; then the second thief divides
one of these parts into two parts, etc. After the fortieth division, the first thief takes the greatest of the
parts; then the second thief takes the greatest of the remaining parts, etc. The last, fortyfirst, part goes to
Ali-Baba.

What is the greatest number of coins each thief can get under this Rule regardless of the other thieves’
actions?

Grade 8
50.8.1. Prove that 1

2
(

x
a + y

b

)
> x+y

a+b for a > b > 0 and x
a < y

b .

50.8.2. A boy decided to cut out of a 2n× 2n piece of paper the greatest possible number of 1× (n+1)
rectangles. What is this number if: a) n < 3; b) n = 3; c) n > 3?

50.8.3. A teacher organizes a tug-of-war tournament and decides that all possible teams that can be
made from students of her class (obviously not counting the whole class as a team) should participate exactly
once. Prove that each team will compete with the team made up of the remaining students.
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50.8.4. In pentagon ABCDE, ∠ABC and ∠CDE are right angles, ∠BCA = ∠DCE, and M is the
midpoint of side AE. Prove that MB = MD (See Fig. 95.)

50.8.5. Is there a set of positive integers such that for any positive integer n at least one of the numbers
n, n+ 50 belongs to the set, and at least one of the numbers n or n+ 1987 does not?

Grade 9
50.9.1. Given a set of 7 different integers from 0 to 9. Prove that for any positive integer n there exists

a pair of integers from the set whose sum ends with the same digit as n does.

50.9.2. Given k vertices of a regular pentagon, find the remaining vertices using a two-sided ruler for
a) k = 4, b) k = 3.

50.9.3. Find 50 positive integers such that none of them is divisible by another, and the product of any
two is divisible by any of the rest.

50.9.4. Prove that if n = 1987, then

(a1 + · · ·+ an)2

b1 + · · ·+ bn
≤ a2

1

b1
+ · · ·+ a2

n

bn

for any a1, a2, . . . , an and positive b1, b2, . . . bn.

50.9.5. Tanya dropped a ball into a huge rectangular pool. She wants to rescue it using 30 narrow
planks, each 1 m long to make a bridge so that each plank is supported by either the edges of the pool or by
the planks already settled, and so that ultimately one of the planks is right over the ball. Prove that Tanya
will not be able to do this if the distance from the sides of the pool to the ball exceeds 2 m. (See Fig. 96.)

Figure 96. (Probl. 50.9.5)

Grade 10
50.10.1. a) Prove that of three positive numbers it is always possible to select two, say, x and y, so that

0 ≤ x− y
1 + xy ≤ 1.
b) Is it possible to select such numbers from any 4 (not necessarily positive) numbers?

50.10.2. The measures of the angles between a plane in space and the sides of an equilateral spatial
triangle are equal to α, β, γ. Prove that one of the numbers sinα, sinβ, sin γ is equal to the sum of the
other two.

50.10.3. On a piece of graph paper, 17 squares with side 1 are shaded. Prove that they can be covered
by rectangles, the sum of whose perimeters is less than 100, so that the distance between any two points on
distinct rectangles is ≥ √2.

50.10.4. Is it possible to divide the set of integers into 3 subsets so that for any integer n the numbers
n, n− 50, n+ 1987 would belong to different subsets?
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50.10.5. The side of a square shaped kingdom is 2 km. The king of this kingdom decides to summon
all his subjects to a ball at 7 p.m. At noon he sends a messenger who may give any orders to any citizen
who, in turn, is empowered to give any order to any other citizen, etc. The whereabouts (home) of each
citizen are known and every citizen can move at a speed of 3 km/h in any direction. Prove that the king
can organize the transmission of messages so that all his loyal subjects can reach the court in time for the
opening of the ball.
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Olympiad 51 (1988)

Grade 7
51.7.1. Prove that for any prime p > 7 the number p4 − 1 is divisible by 240.

51.7.2. Points M and P are the midpoints of two edges of a cube. On the surface of the cube, find the
locus of points equidistant from M and P . The distance between two points of the surface is calculated as
the length of the shortest broken line lying on the surface.

51.7.3. Using only a ruler and calipers draw the straight line through a given point and parallel to a
given line.

51.7.4. Colored wires connect 20 phones so that each wire connects two phones, not more than one wire
connects each pair of phones and not more than two wires lead from each phone. By the Rule we should
select the colors of the wires so that every two wires leading from the same phone have different colors.
What is the least number of wire’s colors needed for such a connection? (Cf. Problem 51.9.5.)

Grade 8
51.8.1. Four numbers: 1, 9, 8, 8 are written in line. We apply to them the following operation: between

each two numbers a and b we write their difference b−a. Then the same operation is applied to the resulting
line, and so on, 100 times. What is the sum of all numbers in the final line?

51.8.2. Find the midpoint of a given segment using only a ruler without marks on it and calipers.

51.8.3. Prove that the equation 3x4 + 5y4 + 7z4 = 11t4 has no solution in natural numbers.

51.8.4. There are four coins and a spring balance with a single pan. It is known that some of the coins
may be forged and a real coin weighs 10 g while a forged one only 9 g. How many times has one to weigh
the coins to find out for sure which of them are forged?

Grade 9
51.9.1. Consider a convex quadrilateral. Its diagonals divide it into four triangles of integer area. Prove

that the product of these four integers cannot end with digits 1988.

51.9.2. Prove that p2
1 + p2

2 + . . .+ p2
24

... 24 for any primes p1, p2, . . . , p24 ≥ 5.

51.9.3. Two perpendicular straight lines lie on a plane. Using only calipers find three points on the
plane that represent vertices of an equilateral triangle.

51.9.4. Let f(x, y) = 1
2 (x+ y − 1)(x+ y − 2) be a function of two positive integers. Prove that for any

positive integer z there exists a single pair x, y such that f(x, y) = z .

51.9.5. Colored wires connect 20 phones so that each wire connects two phones, not more than one wire
connects each pair of phones and not more than three wires lead from each phone. One is asked to select
the colors of the wires so that every two wires leading from the same phone have different colors. What is
the least number of wires’ colors needed to establish any such connection?

Grade 10
51.10.1. A calculator can add, subtract, divide, multiply and take the square root. Find a formula to

calculate the minimum of two numbers using the calculator.

51.10.2. Is there a straight line on the coordinate plane such that the graph of the function y = 2x is
symmetric with respect to this line?

51.10.3. Can one intersect any parallelepiped with a plane so that the section is a rectangle?

51.10.4. One has a one-sided ruler, a pencil and a length standard allowing one to find on a previously
drawn straight line a point at fixed distance from some other point on the same line. Draw a perpendicular
to a given straight line using only these instruments.

51.10.5. One selects a pair of positive integers and performs the following operation: the greater number
of the pair (the first one it they are equal) is divided by the other number, and the pair: (the quotient, the
remainder) replace the original pair. Then the operation is repeated until the smaller number becomes 0.
We start with numbers not greater than 1988. Prove that not more than 6 operations can be performed.
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Olympiad 52 (1989)

Grade 7
52.7.1. We cut a square into 16 smaller equal squares. How to place each of the letters A, B, C, and D

in the squares in four ways so that no horizontal, no vertical and none of the two greater diagonals would
contain the same letters.

52.7.2. Given a fixed line l and passing through a given point not on l. With the help of a ruler and
compass draw a straight line parallel to l and passing through the given point by drawing the least possible
number of curves (circles and straight lines).

52.7.3. There are 4 pairs of socks of two different sizes and of two colors lying pell-mell on a shelf in
a dark room. What is the minimal number of socks from the shelf that we should put into a bag, without
leaving the room for inventory of the bag, in order to have in the bag two socks of the same size and color?

52.7.4. A tourist left a tourist lounge in a boat at 10:15. (S)he promised to come back not later than
at 1:00 p.m. the same day. The speed of the river’s current is known to be 1.4 km/h and the top speed of
the boat in still water is 3 km/h. What is the greatest distance from the lounge that the tourist can cover if
(s)he rests for 15 minutes after every 30 minutes of rowing without mooring and may turn back only after
a rest?

52.7.5. Find all positive integers x satisfying the following condition: the product of the digits of x is
equal to 44x− 86 868 and their sum is equal to a cube of a positive integer.

Grade 8
52.8.1. Solve the equation (x2 + x)2 +

√
x2 − 1 = 0.

52.8.2. Some randomly chosen squares of an infinite graph paper are red and the rest are white. A
grasshopper jumps on red squares and a flea on white ones and each jump can be made over any distance
vertically or horizontally. Prove that the grasshopper and the flea can find themselves side by side after at
most three jumps.

52.8.3. Construct with the help of a ruler and compass the perpendicular to the given straight line
passing through the given point (a) not in this line and (b) on this line. You may only draw the least
possible number of curves (circles and straight lines).

52.8.4. A subset X of the set of all two-digit “numbers” 00, 01, . . . , 98, 99 is such that any infinite
sequence of digits contains two neighboring digits that form a number from X. What is the least cardinality
of X?

52.8.5. Prove that a party of scouts can be always divided into two teams so that the cardinality of the
set of pairs of friends in the same team is less than that of the set of pairs of friends who found themselves
in distinct teams.

52.8.6. If |ax2 + bx+ c| ≤ 1 for x ∈ [0, 1] what can the greatest possible value of |a|+ |b|+ |c| be?

Grade 9
52.9.1. There are 4 different straight lines in space. Two lines are red and two are blue, any red line is

perpendicular to any blue line. Prove that either red lines are parallel or blue lines are parallel.

52.9.2. Points M , K, and L are selected on sides AB, BC, and AC, respectively, of 4ABC so that
MK ‖ AC and ML ‖ BC. Segment BL meets MK at P while AK meets ML at Q. Prove that segments
PQ ‖ AB.

52.9.3. The numbers A1, A2, . . . form a geometric progression, and so do B1, B2, . . . . We form a new
sequence by adding the progressions term-wise: A1 + B1, A2 + B2, . . . , etc. Can you determine the fifth
term of the new sequence if you know the first four of its terms?

52.9.4. The streets of a city are represented on a map as straight lines that divide a square into 25
smaller squares of side 1. (The borderline of the city is considered to be the union of 4 streets.) There is a
snow plow at the bottom right corner of the bottom left square. Find the length of the shortest path for the
plow to pass through all streets and come back to its starting point.

52.9.5. Find all positive numbers x1, x2, . . . , xn that satisfy the system of n equations:

(x1 + x2 + . . .+ xk)(xk + xk+1 + . . .+ xn) = 1, k = 1, 2, . . . , n

if a) n = 3, b) n = 4, c) n = 10, d) n is an arbitrary integer.
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Grade 10
52.10.1. Solve the equation lg(x− 2) = 2x− x2 + 3.
52.10.2. Is there a function whose graph on the coordinate plane has a common point with any straight

line?
52.10.3. Is it possible to put down crosses and noughts on a sheet of graph paper of an arbitrary (or

infinite) size so that no three signs in a row would be the same on any vertical, horizontal, or diagonal line?
52.10.4. Consider n distinct natural numbers. Prove that any infinite arithmetic progression whose first

term does not exceed its difference, d, contains 3 or 4 of the numbers considered if a) n = 5, b) n = 1989.
52.10.5. Calculate with an accuracy to 2.0 the least total length of the cuts that must be made to recut

a unit square into a rectangle with diagonal of length 100.
52.10.6. We select a point on every edge of an arbitrary tetrahedron. We draw a plane through every

three points that belong to edges with a common vertex. Prove that if three of the four planes thus drawn
are tangent to the sphere inscribed into the tetrahedron, the fourth plane is also tangent to it.

Olympiad 53 (1990)

Grade 8
53.8.1. Prove that if 0 < a1 < a2 < . . . < a9, then

a1 + a2 + . . .+ a9

a3 + a6 + a9
< 3.

53.8.2. Let M = m(n+9)(m+2n2 +3). What is the least number of distinct prime divisors the number
M can have?

53.8.3. 11 winners of grades 8, 9, 10 and 11 were invited to pass a selection test to an Olympiad. Can
they be arranged at a round table so that among any five successive students there are representatives of all
four grades?

53.8.4. Quadrilateral ABCD is inscribed in a circle; AB = BC. Let diagonals meet at O, let E be the
other intersection point of CD with the circle that passes through B, C and O. Prove that AD = DE.

53.8.5. A display board composed of 64 bulbs is controlled by 64 buttons, each bulb being switched
on/off by a separate button. Any set of buttons can be pushed simultaneously. This was done and the bulbs
that lighted as a result were marked. What is the least number of switchings that allows one to find out
which button controls which bulb?

Grade 9
53.9.1. 7 boys got together and each of them has three brothers among the other present. Prove that

all seven boys are brothers.
53.9.2. Prove that among any 53 distinct natural numbers whose sum does not exceed 1990 there are

two numbers whose sum is equal to 53.
53.9.3. Inside a circle of radius 1 point A is marked. We drew various chords through A and then drew

a circle of radius 2 through the endpoints of each chord. Prove that all such circles for various points A are
tangent to a certain fixed circle.

53.9.4. There are two counterfeit coins among 8 coins that look alike. One of the counterfeits is lighter
and the other is heavier that a genuine coin. Can one find out in three weighings on scales without weights
whether the two counterfeit coins together are heavier, lighter or of the same weight as two genuine coins?

53.9.5. The decimal representation of a rational number A is a periodic fraction with the period of
length n. What is the longest length of the period of A2 as A varies?

Grade 10
53.10.1. Can one cut a square into three pairwise non-equal and pairwise similar rectangles?
53.10.2. Find all primes p, q, r that satisfy pq + qp = r.

53.10.3. Prove that for all values of parameters a, b, c there is a number x such that

a cosx+ b cos 3x+ c cos 9x ≥ 1
2(|a|+ |b|+ |c|).

53.10.4. How should four points in a disc be arranged so as to have the greatest product of all pairwise
distances between them?
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53.10.5. Points A, B, C, D in space are positioned so that segment BD subtends angles ∠A and ∠C
of measure α and AC subtends angles ∠B and ∠D of measure β. Find the ratio AC : BD if AB 6= CD.

Grade 11
53.11.1. Find max

x,y
(x

√
1− y2 + y

√
1− x2).

53.11.2. Prove that if a function f(x) is continuous on [0, 1] and satisfies the identity f(f(x)) = x2 for
all x, then x2 < f(x) < x for any x ∈ (0, 1). Give an example of such a function.

53.11.3. In triangle ABC, consider median BD and bisector BE. Can it happen that BD is a bisector
in 4ABE and BE a median in 4BCD?

53.11.4. Prove that there is a multiple of any odd n, whose decimal representation contains only odd
digits.

53.11.5. Four points are projections of a point to four faces of a tetrahedron. How are the points
arranged in space?

Olympiad 54 (1991)

Grade 8
54.8.1. Prove that if a > b > c, then a2(b− c) + b2(c− a) + c2(a− b) > 0.

54.8.2. Given points A and B on a plane, construct a point C on ray AB, such that AC = 2AB. Is it
possible to do it using a compass with a fixed span r if a) AB < 2r, b) AB ≥ 2r?

54.8.3. To guard a military installation around the clock, a day shift and a night shift are required. A
sentry guard may take either a day, or a night shift, or work around the clock. In these cases the guard is
given a leave of absence of not less than 1, 1.5 or 2.5 full days, respectively. What is the least number of
guards necessary to ensure the security of the installation?

54.8.4. Given 6 seemingly indistinguishable weights of 1, 2, 3, 4, 5 and 6 g, respectively, a drunken
workman painted them at random “1 g”, . . . , “6 g”. How can you check whether the labels match the
weights using only two weighings on a balance without any other weights except the given ones?

54.8.5. An air line was established between two countries so that any two cities, one from each country,
are connected by precisely one flight which is a one-way flight and one can fly somewhere from each city.
Prove that there are cities A, B, C, D, which can be visited by flying directly from A to B, from B to C,
from C to D and from D to A.

Grade 9
54.9.1. Solve the equation:

(1 + x+ x2)(1 + x+ . . .+ x10) = (1 + x+ . . .+ x6)2.

54.9.2. A conjurer divided a deck of a) 36, b) 54 cards into several piles and wrote a number equal to
the number of cards in the pile on each card from every pile. Then he mixed the cards in a special way,
divided them into piles once again and wrote another number equal to the number of cards in the new pile
on each card to the right of the first number. Could the conjurer do this so that there are no equal pairs
among the pairs of numbers on the cards and for every pair a, b there is a “symmetric” pair b, a? (A pair
a, a is assumed to be symmetric to itself.) Cf. Problem 54.10.5.

54.9.3. Prove that in a regular 12-gon A1A2 . . . A12 the diagonals A1A5, A2A6, A3A8 and A4A11 meet
at one point.

54.9.4. After the graph of the function y = 1
x for positive x was drawn the coordinate axes were erased

and their directions forgotten. How to recover the erased axes using a ruler and compass?

54.9.5. Cells of a 15× 15 table contain nonzero numbers such that each of them is equal to the product
of all neighboring numbers. (Two numbers are said to be neighboring if their cells have a common side.)
Prove that all numbers in the table are positive.

Grade 10
54.10.1. A function f satisfies f(x) +

(
x+ 1

2

)
f(1 − x) = 1 for any x ∈ (−∞,∞). Find a) f(0) and

f(1); b) all such functions f .
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54.10.2. What is the number n of identical billiard balls that can be arranged in space so that each ball
is tangent to exactly three other balls? List all possible values of n.

54.10.3. Two nonintersecting circles are inscribed in a given angle. An isosceles triangle ABC is placed
between the circles so that its vertices are on the sides of the angle and the equal sides AB and AC are
tangent to the corresponding circles. Prove that the sum of the radii of the circles is equal to the height of
the triangle drawn from vertex A.

54.10.4. We constructed a cube of size 10 × 10 × 10 of 500 black and 500 white small identical cubes
so that the cubes adjacent to each other were of different colors. Several of small cubes were removed from
the cube so that exactly 1 small cube was missing in each of 300 rows or columns of size 1× 1× 10 parallel
to an edge of the cube. Prove that the number of black cubes removed is divisible by 4.

54.10.5. A conjurer divided a deck of 54 cards into several piles. A spectator writes the number equal
to the number of cards in the corresponding pile on each card. Then the conjurer mixes the cards in a special
way, divides them into piles again and the spectator writes another number equal to the number of cards in
the new pile to the right of the first number on each card. They repeat this process several times. What
is the least number of deals required for the conjurer to make different cards have different sets of numbers
(whatever their position on the cards)?

Grade 11
54.11.1. Between which digits of the number 1 99...99 1 with 1991-many nines, one should insert a) +

(the summation sign) to get the least possible number; b) × (the multiplication sign) to get the greatest
possible number?

54.11.2. Fig. 97shows an orthogonal projection of the Earth (which is supposed to be an ideal ball)
and its equator, A and B being the common points of the projection of the equator and the circle — the
projection of the Earth).

Figure 97. (Probl. 54.11.2)

How can the projection of the North pole be found with the help of a ruler and compass?
54.11.3. Prove that in a regular 54-gon there are 4 diagonals that do not pass through the center and

meet at one point.
54.11.4. A Parliament of 2000 MPs decided to ratify the state budget of 200 expenditure items. Each

MP prepared a draft budget with what (s)he thinks the maximum possible allocation for each item so
that the total expenditure does not exceed a given ceiling, S. For each item, the Parliament approves the
maximum expenditure approved by not less than k MPs. What is the least value of k to ensure that the
approved total does not exceed S?

54.11.5. On a rectangular screen of size m× n divided into unit cells more than (m− 1) · (n− 1) cells
are lighted. If in a 2 × 2 square 3 cells are not lighted, then the fourth cell switches itself off after a while.
Prove that at least one cell of the screen is lighted at all times.

Olympiad 551 (1992)

Grade 8
55.8.1 (Se). Prove that if a+ b+ c+ d > 0, a > c, b > d, then |a+ b| > |c+ d|.

1The authorship of all problems of this olympiad is indicated after the number of the problem by an abbreviation boldfaced:
A. Galochkin, S. Gashkov, B. Kukushkin, I. Sergeev, I. Sharygin, A. Skopenkov, A. Spivak, S. Tokarev.
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55.8.2 (To). Can it happen during a game of chess that on each of 30 diagonals of the chess-board there
stands an odd number of chips (each own number for each diagonal; some of these numbers may be equal)?

55.8.3 (To). An Olympiad lasted two days. Each participant solved during the first day as many prob-
lems as all other participants together during the second day. Prove that all participants of the Olympiad
solved equal number of problems.

55.8.4 (To). What is the least number of weights in a set which can be divided into either 3, or 4, or 5
piles of equal mass?

55.8.5 (SG). Prove that in a right triangle the length of the bisector of the right angle does not exceed
a half of the projection of the hypotenuse to the line perpendicular to the bisector.

55.8.6 (To). Are there four arrangements of 9 people at a round table such that no two of these people
sit beside each other more than once? (Cf. Problem 55.9.6.)

Grade 9
55.9.1 (To). Each participant of a chess tournament won, as white, as many games as all remaining

players together when they played as black. Prove that all participants won the same number of games each.
(Cf. Problem 55.8.3.)

55.9.2 (AG). Which odd positive integers n < 10000 are more numerous: those for which the number
formed by the four last digits of n9 is greater than n or those for which it is smaller than n?

55.9.3 (To). At the center of a square pie sits a raisin (of point size). A triangular piece can be cut
off the pie along the line which intersects two neighboring sides of the square at the points different from
vertices of the square; another triangular piece can be cut off the remaining part in the same manner, etc.
Is it possible to cut the raisin off, i.e., to get a piece of the pie with the raisin? (Cf. Problem 55.10.2.)

55.9.4 (Sp). In a 9× 9 square table, 9 cells are marked: those at the intersection of the 2-nd, 5-th and
8-th rows with the 2-nd, 5-th and 8-th column. In how many ways can one get from the lower left cell to
the upper right one moving only upwards and to the right without entering marked cells?

55.9.5 (Sh). Diagonal AC of trapezoid ABCD is equal to the lateral side CD. The line symmetric to
BD with respect to AD intersects AC at point E. Prove that line AB divides DE in halves.

55.9.6 (To). Is it possible to place 2n+ 1 people at a round table n times so that no two sit beside each
other more than once if (a) n = 5, (b) n = 10? (Cf. Problem 55.8.6.)

Grade 10
55.10.1 (AG). Prove that if the sum of cosines of the angles of a quadrilateral is equal to 0 then it is

either a parallelogram, or a trapezoid, or an inscribed quadrilateral.
55.10.2 (To). A triangular piece can be cut off a pie of the form of a convex pentagon along the line that

meets two neighboring sides at points distinct from the vertices; another piece can be cut off the remaining
part in the same way, etc.

What are points on the surface of the pie should one stick a candle into so that it were impossible to
get a piece of pie with the candle? (Cf. Problem 55.9.3.)

55.10.3 (AG). A white chip is placed in the bottom left corner of an m× n rectangular board, a black
one is placed in the top right corner. Two players move their chips in turn along the horizontals or verticals
1 cell per move; the white can only move to the right or upwards. The white begins. The winner is the one
who places his (her) chip on the cell occupied by the other player. Who can ensure the success: the white
or the black?

55.10.4 (To). What is the least number of weights in the set that can be divided into either 4, 5, or 6
piles of equal mass? (Cf. Problem 55.8.4.)

55.10.5 (SG). Consider a convex centrally symmetric polygon. Prove that a rhombus of half the poly-
gon’s area can be placed inside the polygon.

55.10.6 (To). Each face of a convex polyhedron is a polygon with an even number of sides. Is it always
possible to paint the edges of the polyhedron 2 colors so that each face has equal numbers of differently
colored edges?

Grade 11
55.11.1 (To). It is required to place numbers into each cell of a n×n square table so that the sum of the

numbers on each of 4n− 2 diagonals were equal to 1. Is it possible to do this for (a) n = 55; (b) n = 1992?
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55.11.2 (Ku). Find the angles of a convex quadrilateral ABCD in which ∠BAC = 30◦, ∠ACD = 40◦,
∠ADB = 50◦, ∠CBD = 60◦ and ∠ABC + ∠ADC > 180◦.

55.11.3 (Sk). Aladdin visited every point of equator moving sometimes to the west, sometimes to the
east and sometimes being instantaneously transported by genies to the diametrically opposite point on the
Earth. Prove that there was a period of time during which the difference of distances moved by Aladdin to
the west and to the east was not less than half the length of equator.

55.11.4 (Sp). Inside a tetrahedron a triangle is placed whose projections to the faces of tetrahedron are
of area P1, P2, P3, P4, respectively. Prove that

a) in a regular tetrahedron P1 ≤ P2 + P3 + P4;
b) if S1, S2, S3, S4 are the areas of the corresponding faces of tetrahedron, then P1S1 ≤ P2S2 + P3S3 +

P4S4.

55.11.5 (To). Is it always possible to paint the edges of a convex polyhedron two colors so that for each
face the number of edges painted one color would differ from the number of edges painted the other color by
not more than 1?

55.11.6 (Se). A calculator can compare loga b and logc d, where a, b, c, d > 1. It works according to the
following rules:

if b > a and d > c the calculator passes to comparing loga
b
a with logc

d
c ;

if b < a and d < c the calculator passes to comparing logc d with logb a;
if (b− a)(d− c) ≤ 0 it prints the answer.

a) Show how the calculator compares log25 75 with log65 260. b) Prove that the calculator can compare two
nonequal logarithms after finitely many steps.

Olympiad 561 (1993)

Grade 8
56.8.1 (Ku). Denote by s(x) the sum of the digits of a positive integer x. Solve:
a) x+ s(x) + s(s(x)) = 1993
b) x+ s(x) + s(s(x)) + s(s(s(x))) = 1993

56.8.2 (Bo). Knowing that n is the sum of squares of three positive integers, prove that n2 is also the
sum of squares of three positive integers.

56.8.3 (Sl). On a straight line stand two chips, a red to the left of a blue. The Rule allows the following
two operations: (a) to insert two chips of one color in a row at any place on the line and (b) to delete any
two neighboring chips of one color. Is it possible to leave after finitely many operations only two chips on
the line: a red to the right of a blue?

56.8.4 (Be). At the court of Tsar Gorokh, the tsar’s astrologist declares a moment of time favorable if
on a watch with a centrally placed second hand the minute hand occurs after the hour hand and before the
second one (counting clockwise). Does the whole day (24 h) contain more favorable time than unfavorable?

56.8.5 (Sp). Is there a finite word composed of the letters of Russian alphabet (32 letters) that has
no two identical neighboring subwords but such subwords appear if one ascribes any letter (of the same
alphabet) in front or at the back of this word?

56.8.6 (Ak). A circle centered at D passes through points A, B, and the center O of the escribed circle
of triangle 4ABC tangent to side BC and the extensions of sides AB and AC. Prove that points A, B, C,
and D lie on one circle.

Grade 9
56.9.1 (Sh). For distinct points A and B on a plane, find the locus of points C such that triangle 4ABC

is acute and the value of its angle ∠A is intermediate among the triangle’s angles.

56.9.2 (Ko). Let x1 = 4, x2 = 6 and define xn for n ≥ 3 to be the least non-prime greater than
2xn−1 − xn−2. Find x1000.

1The authorship of all problems of this olympiad is indicated after the number of the problem by an abbreviation boldfaced:
I. F. Akulich, A. Andzhans, A. Ya. Belov, A. I. Galochkin, G. Galperin, S. B. Gashkov, GZ-B: S. M. Gusein-Zade,
A. Ya. Belov, G. Kondakov, S. V. Konyagin, B. N. Kukushkin, D. Botin, Slitinsky, A. W. Spivak, I. F. Sharygin, S. I. Tokarev,
VI: A. Vladimirov, R. Ismailov, VT: M. Vyaly, D. Tereshin.
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56.9.3 (Gal). A paper triangle with angles of 20◦, 20◦, 140◦ is cut along one of its bisectors into two
triangles; one of these triangles is also cut along one of its bisectors, etc. Can we obtain a triangle similar
to the initial one after several cuts?

56.9.4 (To). In Pete’s class there 28 students beside him. Each two of these 28 have distinct number of
friends among the classmates. How many friends does Pete have in this class?

56.9.5 (GG). To every pair of numbers x, y the Rule assigns a number x ∗ y. Find 1993 ∗ 1935 if it is
known that

x ∗ x = 0, and x ∗ (y ∗ z) = (x ∗ y) + z for any x, y, z.

56.9.6 (Sh). Given a convex quadrilateral ABMC with AB = BC, ∠BAM = 30◦, ∠ACM = 150◦,
prove that AM is the bisector of ∠BMC.

Grade 10
56.10.1 (Ga). In the representation of numbers A and B as decimal fractions the lengths of their minimal

periods are equal to 6 and 12, respectively. What might the length of the minimal period in the similar
representation of A+B be? Find all answers.

56.10.2 (Ga). The grandfather of Baron K. F. I. von Münchhausen constructed a castle with a square
in the horizontal cross-section. He divided the castle into 9 equal square ball rooms and placed the arsenal
in the middle one. Baron’s father divided each of the remaining 8 ball rooms into 9 equal square halls and
organized winter gardens in all central halls. Baron himself divided each of the 64 empty halls into 9 equal
square rooms and placed a swimming pool in each of the central rooms. Baron furnished the other rooms
and made a door between every pair of neighboring furnished rooms. Baron shut all the other temporary
doors.

Baron boasts that he once managed to go over his furnished rooms visiting each just once and returning
in the initial one. We know Baron as a gentleman with a name for honesty won by his truthful stories, but
still wonder: is he telling the truth in this instance?

56.10.3 (Kon). A river connects two circular lakes of radius 10 km each; the banks of the river and the
lakes are segments of either straight lines or circles. From any point on any of the river’s banks one can take
a boat and reach the other bank by swimming not longer than 1 km. Assuming that the boat is a point is it
possible for a pilot to lead the boat along the river in order to be at the distance of not more than (a) 700
m (b) 800 m away from each of the banks?

56.10.4 (VI). For every pair of real numbers a and b consider the sequence1 pn = [2{an + b}]. Any k
successive terms of this sequence is called a word. Is it true that any ordered set of 0’s and 1’s of length k
can be a word of the sequence determined by certain a and b for (a) k = 4, (b) k = 5?

56.10.5 (VT). In a botanical classifier a plant is determined by 100 features. Each of the features can
either be present or absent. A classifier is considered to be good if any two plants have less than half of the
features in common. Prove that a good classifier can not describe more than 50 plants.

56.10.6 (Sh). On side AB of triangle ABC the square is constructed outwards, its center is O. Points
M and N are the midpoints of AC and BC; the lengths of these sides are equal to a and b, respectively.
Find the maximum of the sum OM +ON as the angle ∠ACB varies.

Grade 11
56.11.1 (Be). Knowing that tanα+ tanβ = p and cotα+ cotβ = q find tan(α+ β).

56.11.2 (Be). The unit square is divided into finitely many smaller squares (of, perhaps, distinct sizes).
Consider the squares whose intersection with the main diagonal is nonempty. Is it possible for the sum of
perimeters of the squares be greater than 1993?

56.11.3 (An). Given n points on a plane no three of which lie on one line. A straight line passes through
every pair of the points. What is the least number of pair-wise non-parallel lines among these lines?

56.11.4 (GZB). Stones lie in several boxes. The Rule allows us in one move: to select a number n; to
unite the stones in each box in groups of n and a residue of less than n stones in it; to leave in each group
a stone and the whole residue; it also allows us to pocket the rest of the stones. Is it possible to ensure in 5
moves that each box contains one stone if initially there were not more than (a) 460 stones, (b) 461 stones
in each box?

1Recall that {x} and [x] denotes the fractional and the integer part of x, respectively.
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56.11.5 (Be). It is known that the domain of definition of a function f is segment [−1, 1], and f(f(x)) =
−x for all x; the graph of f is the union of finitely many points and intervals.

Is it possible to draw the graph of f if the domain of f is a) ]− 1, 1[? b) the whole real line?
56.11.6 (Sh). A fly flies inside a regular tetrahedron with edge a. What is the shortest length of the

flight the fly should take to visit every face and return to the initial spot?

Olympiad 571 (1994)

Grade 6
57.6.1. Can there be four people among which no three have identical first name, patronimic (middle

name) and the last name but any pair of these people has identical either first, or middle, or last name?
57.6.2. Find a) the 6-th, b) the 1994-th number in the sequence 2, 6, 12, 20, 30, . . .
57.6.3. Several teams of guards of social property, manned by identical number of guards each, slept

more nights during their vigil than there are guards in the team but less than there are teams. How many
guards are there in the team if all guards from the team together slept 1001 man-night?

57.6.4. Construct a 3× 3× 3 cube of 1× 1× 1 red, green and yellow cubes so that in any 3× 1× 1 layer
there are cubes of all three colors.

57.6.5. Cut a square into three parts from which it is possible to construct a nonright scalane triangle.
57.6.6. Kate’s family drank coffee. Each member of the family drank out a full cup of coffee with milk

and Kate drank a quarter of the milk and a sixth of the coffee. How many people are there in Kate’s family?
57.6.7. Among any 9 of 60 kids three are from the same grade. Is it necessary that there are a) 15, b)

16 kids from the same grade?
57.6.8. A pedestrian walked along (across?) 6 streets of a town in a row passing each street exactly

twice; however long he contemplated over the map he could not find a route so as to pass along any street
just once during one stroll. Is there such a route?

Grade 7
57.7.1. During the past two years a factory lowered the volume of the products it manufactured by

51%. Each year the volume diminished by the same number of percents. What is this number? (5 points)
57.7.2. Each staircase of a house has the same number of floors; the same number of appartments on

each floor. There are more floors than the number of appartments on the floor; more appartments on the
floor than there are staircases and there is more than one staircase. How many floors are there in the house
if the total number of its appartments is 105?

a) Find at least one solution. (2 points)
b) Find all solutions and prove that there are no more. (4 points)

57.7.3. When the committee asked Neznajka (Master Ignoramus) to contribute with a problem for a
Math Olympiad in the Sunny Town he wrote the following head-twister, where different letters replace
different figures:

+ABC
DEF

GHKL

Is it possible to solve it? (5 points)
57.7.4. There are plenty of red, green and yellow cubes of size 1 × 1 × 1. Is it possible to compose of

them a 3× 3× 3 cube so that each 3× 1× 1 layer has all three colors? (6 points)
57.7.5. On a 4×6 board there stand two Ivan’s black chips and two Sergey’s white chips (as on Fig. 98.

a)).
Each player, in turn, moves any of his chips one step along the vertical. Ivan, though plays black, starts.

If after somebody’s move a black chip ocuurs among two white ones along either a horisontal or a diagonal
(as on Fig. 98. b)) it is considered killed and should be removed from the board. Ivan’s goal is to lead his
chips from the top row to the bottom one. Can Sergey prevent Ivan from getting his goal? (8 points)

1Problems for the 6-th and 7-th grades were selected by a committee headed by D. Bochina, S. Dorichenko, A. Kovaldzhi
and I. Yashchenko; the authors of the other problems are: A. Kovaldzhi (8.2, 8.4, 10.1), D. Botin (8.5), Yu. Chekanov (9.2),
G. Galperin (11.4), A. Galochkin (9.5), K. Ignatiev (9.6), A. Kovaldzhi, G. Kondakov (11.1), O. Kryzhanovski (8.6, 10.6),
S. Markelov (11.5), I. Nagel (9.4), V. Proizvolov (10.5), G. Shabat (10.2), I. Sharygin (10.4), N. Vasiliev (9.3, 11.3, 11.6); the
authors of several problems are anonimous.
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Figure 98. (Probl. 57.7.5)

57.7.6. In a school the astronomical circle gathered 20 times. Each time there were exactly 5 listeneres
and no 2 students met during the circle’s getherings more than once. Prove that at least 20 different students
attended the circle. (12 points)

Grade 8
57.8.1. A cooperative enterprize gets apple and grape juice in identical cans and produces a mixed drink

in equal jars. One can of apple juice suffices for exactly 6 jars of the drink; one can of grape juice suffices
for exactly 10 jars of the drink. When they changed the recipe one can of apple juice became sufficient for
exactly 5 jars of the drink only. For how many jars of the drink will now suffice one can of the grape juice?
(The drink is a pure mixture not diluted with water or preservatives, etc.)

57.8.2. A student did not notice a multiplication sign between two three-digit numbers and wrote one
6-digit number that happened to be 7 times greater than the product of the two three-digit numbers. Find
the factors.

57.8.3. In a triangle ABC the bisectors of angles A and C are drawn. Points P and Q are the bases of
the perpendiculars dropped from vertex B to these bisectors. Prove that PQ ‖ AC.

57.8.4. Four grasshoppers sit at the vertices of a square. Each minute one of them hops into the point
symmetric with respect to another grasshopper. Prove that it it impossible for the grasshoppers to sit at
some moment at the vertices of a larger square.

57.8.5. The royal astrologer considers a moment of time favorable if the hour, minute and second hands
of the clock are on one side of the dial’s diameter. All other time is considered unfavorable. The hands
turn around a common axis uniformly, without jumps. Which kind of time prevails during the full day (24
hours), favorable or unfavorable?

57.8.6. Two play a game on a 19 × 94 checkered board. Each in turn marks a square (of any possible
size) along the lines of the mesh and shades it. The one who shades the last cell wins. It is forbidded to
shade a cell twice. Who wins if played optimally and what should the strategy be?

Grade 9
57.9.1. Is there a nonconvex pentagon no two of whose five diagonals have a common point apart from

a vertex?
57.9.2. Kolya has a line segment of length k, Leo has another one, of length l. First, Kolya divides his

segment into three parts; then Leo divides his segment into three parts. If it is possible to build two triangles
from the six segments obtained, Leo wins; otherwise Kolya wins. Depending on the ratio k

l , who, Kolya or
Leo, can assure victory and what should the winning strategy be?

57.9.3. Prove that the equation

x2 + y2 + z2 = x3 + y3 + z3

has infinitely many solutions in integers.
57.9.4. Two circles intersect at points A and B. To both circles tangents are drawn through A. The

tangents intersect the circles at points M and N . The straight lines intersect the circles again at points P
and Q (P lies on BM , Q lies on BN). Prove that MP = NQ.
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57.9.5. Find the maximal natural number not ending with a 0 such that if we strike out one (not the
first) of its figures we get a divisor of the initial number.

57.9.6. During dull lessons students sometimes play “marine battle”. In a 10× 10 square of checkered
paper one should place ships — rectangles — of sizes: one 1× 4, two 1× 3, three 1× 2 and four 1× 1. The
ships should not have common points (even vertices) but can have common points (even edges) with the
sides of the square. Prove that

a) if one places the ships as listed above (starting with the largest), one can always squeeze all the ships
in the square even if one lives the running moment at all times and places each ship without thinking about
the other ships’ future;

b) if one places the ships in the opposit order (starting with smaller ships), a situation might arize when
it is impossible to squeeze in the next ship. (Give an example.)

Grade 10
57.10.1. A student did not notice the multiplication sign between two 7-digit numbers and wrote one

14-digit number which turned out to be 3 times the would be product. What are the initial numbers?

57.10.2. An infinite sequence of numbers xn is determined by the formula

xn+1 = 1− |1− 2xn|, 0 ≤ x1 ≤ 1.

Prove that the sequance is periodic starting from a certian place a) if and b) only if x1 ∈Q.

57.10.3. Each of the 1994 Parliament members slapped exactly one of his/her colleagues on the face.
Prove that it is possible to compose a Parliament Committee of 665 members none of whom settles disputes
with the colleagues in this way.

57.10.4. Let D be a point on side BC of 4ABC. Circles are drawn inside 4ABD and 4ACD; a
common outer tangent (distinct from BC) is drawn to the circles; it intersects AD at K. Prove that the
length of AK does not depend on the position of D on BC.

57.10.5. Consider an arbitrary polygon, not even necessarily convex one. Recall that a chord of a
polygon is a line segment whose endpoints belong to the polygon’s contour while the segment itself lies
entirely inside the polygon, the contour included.

a) Is there always a chord of the polygon that divides it into parts of equal area?
b) Prove that any polygon can be divided by a chord into parts the area of each of them not less than

1
3 of the total area of the polygon. (We always assume that a chord divides the polygon into two parts: the
part that splits into several pieces is, nevertheless, considered as one part.)

57.10.6. Is there a polynomial P (x) with a negative coefficient while all the coefficients of any power
Pn(x) are positive for n > 1?

Grade 11
57.11.1. Devise a polyhedron with no three faces having the same number of edges.

57.11.2. See Probl. 57.10.2

57.11.3. In a round goblet whose section is the graph of the function y = x4 a cherry — a ball of radius
r — is dropped. What is the largest r for which the ball can touch the lowest point of the bottom? (In plain
math words: what is the maximal radius of the disc lying in the domain y ≥ x4 and containning the origin?)

57.11.4. A convex polyhedron has 9 vertices, one of which is A. Parallel translations that send A into
each of the other vertices form 8 equal polyhedra. Prove that at least two of these 8 polyhedra have an inner
point in intersection.

57.11.5. Extensions of the sides AB and CD of a convex polygon ABCD intersect at point P ; extensions
of the sides BC and AD intersect at point Q. Prove that if each of the Consider three pairs of bisectors: the
outer angles of the quadrilateral at vertices A and C; the outer angles at vertices B and D; and the outer
angles at vertices P and Q of triangles 4QAB and 4PBC, respectively. Prove that if each of the three
pairs of bisectors intersects, the intersection points lie on one straight line.

57.11.6. Prove that for any k > 1 there exists a power of 2 such that among its k last digits the nines
constitute not less than one half. For example: 212 = 4096, 253 = ...992
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Olympiad 581 (1995)

Grade 8
58.8.1. M. V. Lomonosov spent one denezhka a day for a loaf of bread and kvas. When prices went up

20%, he bought half a loaf of bread and kvas for the same denezhka. Will a denezhka be enough to buy at
least kvas if the prices will again rise 20%?

58.8.2. Prove that the numbers of the form 10017, 100117, 1001117,... are divisible by 53.

58.8.3. Consider a convex quadrilateral and a point O inside it such that ∠AOB = ∠COD = 120◦,
AO = OB and CO = OD. Let K, L and M be the midpoints of sides AB, BC and CD, respectively. Prove
that a) KL = LM ; b) triangle KLM is an equilateral one.

58.8.4. To manufacture a parallelepipedal closed box of volume at least 1995 units we have a)962, b)
960, c) 958 square units of material. Assuming our production is wasteless, is the stock sufficient?

58.8.5. Several villages are connected with a town; there is no direct communication between villages.
A truck with goods for all villages starts from the town. The cost of the truck’s trip is equal to the product
of the total weight of the load by the distance. Suppose that the weight of each item in the load is equal in
some units to the distance from the town to the item’s destination. Prove that the cost of the delivery does
not depend on the order in which the goods are delivered.

58.8.6. A straight line cuts off a regular quadrilateral ABCDEF triangle AKN such that AK+AN =
AB. Find the sum of the angles with vertices in the vertices of the quadrilateral that subtend segment KN .

Grade 9
58.9.1. Prove that if we insert any number of digits 3 between the zeroes of the number 12008, we get

a number divisible by 19.

58.9.2. Consider an isosceles triangle ABC. For an arbitrary point P inside the triangle consider
intersection points A′ and C ′ of straight lines AP with BC and CP with BA, respectively. Find the locus
of points P for which segments AA′ and CC ′ are equal.

58.9.3. Let us refer to a rectangular of size1× k for any natural k a strip. For what integer n can one
cut a 1995× n rectangle into pairwise different strips?

58.9.4. Consider a quadruple of natural numbers a, b, c and d such that ab = cd. Can a+ b+ c+ d be
a prime?

58.9.5. We start with four identical right triangles. In one move we can cut one of the triangles along
the hight from the right angle into two triangles; so we get 5 right triangles. Prove that after any number of
moves there are two identical triangles among the whole lot.

58.9.6. Geologists took 80 cans with preserved food for a trip. The weights of cans are known and
pairwise distinct (there is an inventory). After a while the labells became unreadable and only the cook
knows which can contains what. She can prove it beyond any doubt without opening the cans and using
only the list of inventory and a balance with two pans and a hand that shows the difference of weight in the
pans. Prove that to this end a) 4 weighings suffice while b) 3 do not.

58.9.1. The number sin a is known. What is the largest number of different values that a) sin a
2? b)

sin a
3 can take?

Grade 10
58.10.2. See Probl. 58.9.2.

58.10.3. Consider trapezoid ABCD. We construct circles with the lateral sides of the trapezoid as
diameters. Suppose that the diagonals of ABCD meet at point K not on these circles. Prove that the
lengths of the tangents to these circles from point K are equal.

58.10.4. See Probl. 58.9.5.

58.10.5. Prove that if a, b and c are integers and, moreover, a
b + b

c + c
a and a

c + c
b + b

a are integers, then
a = b = c.

1The authors of the problems are: A. Belov (10.6, 11.5, 11.7), D. Botin(8.4), Yu. Chekanov (9.3), A. Galochkin (8.2, 9.1,
11.1, 11.2), A. Gribalko (10.5), G. Kondakov (11.4), W. K. Kovaldzhi (8.1, 8.5), S. Markelov (8.3, 9.2, 10.1, 10.3), A. Shapovalov
(9.5), V. Senderov (10.6, 11.5, 11.7), I. Sharygin (11.3), V. Proizvolov (8.6), A. Tolpygo (9.6).
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58.10.6. On a board, several bulbs are on. There are several buttons on the control panell. Pressing
a button changes the state of the bulbs it is connected with. It is known that for any collection of bulbs
there is a bulb connected with an odd number of bulbs from this set. Prove that by pressing buttons on can
switch off all the bulbs.

Grade 11
58.11.1. Prove that |x+ y+ z| ≤ |x+ y− z|+ |x− y+ z|+ |−x+ y+ z|, where x, y, z are real numbers.

58.11.2. Is it possible to paint the edges of n-angled prizm 3 colors so that each face had the boundary
painted all 3 colors and each vertex was the intersection point of edges of different colors if a) n = 1995, b)
n = 1996?

58.11.3. Consider triangle ABC, its median AM , bisector AL and a point K on AM such that KL ‖
AC. Prove that AL ⊥ KC.

58.11.4. Divide segment [−1, 1] into black and white subsegments so that the integral of any a) linear
function, b) quadratic polynomial along black segments was equal to that along white ones.

58.11.5. Consider two infinite in both ways sequences A of period 1995 and B which is either nonperiodic
or the length of its period is 6= 1995. Let any segment of sequence B not longer than n be contained in A.
What is the largest n for which such sequences exist?

58.11.6. Prove that there exist infinitely many nonprime n’s such that 3n−1 − 2n−1
...n.

58.11.7. Is there a polygon and a point outside it such that from this point non of its vertices is visible?

Olympiad 591 (1996)

Grade 8
59.8.1. It is known that a+ b2/a = b+ a2/b. Is it true that a = b? (R Fedorov)

59.8.2. Along a circle stand 10 iron weighs. Between every two weighs there is a brass ball. Mass of
each ball is equal to the difference of masses of its neighboring weighs. Prove that it is possible to divide the
balls among two pans, so as to make the balance in equilibrium. (V. Proizvolov)

59.8.3. At nodes of graph paper gardeners live; flowers grow everywhere around them. Each flower is
to be taken care of by the three nearest to it gardeners. One of the gardeners wishes to know what is the
flower (s)he has to take care of. Sketch the plot of these gardeners. (I. F. Sharygin)

59.8.4. Consider an equilateral triangle 4ABC. The points K and L divide the leg BC into three equal
parts, the point M divides the leg AC in ratio 1 : 2 counting from the vertex A. Prove that ∠AKM +
∠ALM = 30◦. (V. Proizvolov)

59.8.5. A rook stands in a corner of an n × n chess board. For what n, moving alternately along
horizontals and verticals, the rook can visit all the cells of the board and return to the initial corner after
n2 moves? (A cell is visited only if the rook stops on it, those that the rook “flew over” during the move are
not counted as visited.) (A. Spivak)

59.8.6. Eight students solved 8 problems. a) It turned out that each problem was solved by 5 students.
Prove that there are two students such that each problem is solved by at least one of them.

b) If it turned out that each problem was solved by 4 students, it can happen that there is no pair of
students such that each problem is solved by at least one of them. (Give an example.) (S. Tokarev)

Grade 9
59.9.1. Numbers a, b and c satisfy inequalities |a − b| ≥ |c|, |b − c| ≥ |a|, |c − a| ≥ |b|. Prove that one

of the numbers a, b or c is equal to the sum of the other two numbers. (A. Galochkin)

59.9.2. The circle is circumscribed about 4ABC; through the points A and B tangents are drawn, they
meet at M . The point N lies on the leg BC, and MN ‖ AC. Prove that AN = NC. (I. F. Sharygin)

59.9.3. Integers 1 to n are written in a row. Under them, the same numbers are written in some other
order. Could it happen that the sum of each number with the one under it is a perfect square? Consider a)
n = 9, b) n = 11, c)n = 1996? (P. Filevich)

59.9.4. Let A and B be points on a circle. They divide the circle into two parts. Find the locus of the
midpoints of all chords whose endpoints lie on different arcs

˘
AB. (I. F. Sharygin)
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59.9.5. Ali-Baba and a robber divide a treasure consisting of 100 golden coins. The treasure is split
into 10 piles of 10 coins. Ali-Baba chooses 4 piles, places a mug beside each pile, and puts several coins (not
less than 1, but not the whole pile) from the respective pile into each mug. The robber must rearrange the
mugs by altering their initial attribution to piles, after which the coins are taken out from each mug and
added to the newly attributed pile.

Then Ali-Baba again selects 4 piles of 10, places mugs beside the piles, etc.
At any moment Ali-Baba can quit and go away with any 3 mugs he chooses. The remaining coins will

be the robber’s share. What is the greatest number of coins Ali-Baba can collect, if the robber is no altruist
either? (A. Ja. Belov)

Grade 10
59.10.1. Positive numbers a, b and c satisfy a2 +b2−ab = c2. Prove that (a−c)(b−c) ≤ 0. (A. Egorov,

V. Bugaenko)

59.10.2. In a 10× 10 square drawn on a graph paper along its lines, the centers of all unit squares (100
points altogether) are marked. What is the least number of straight lines non parallel to the sides of big
square and passing through all the points marked? (A. Shapovalov)

59.10.3. The points P1, P2, . . . , Pn−1 divide the side BC of an equilateral triangle 4ABC into n equal
segments: BP1 = P1P2 = · · · = Pn−1C. The point M on the side AC is such that AM = BP1. Prove that
∠AP1M+∠AP2M+· · ·+∠APn−1M = 30◦, if a) n = 3; b) n is an arbitrary positive integer. (V. Proizvolov)

59.10.4. In a corner of an m× n chessboard stands a bishop. Two play in turns; they alternately move
the bishop horizontally or vertically any distance; the Rule forbids the bishop to stop on the field over which
it had been already moved or at which it had already stoped. The one who is stuck is the looser. Which
player can assure victory for him/herself: the one who starts or the other one and now should (s)he move?
(B. Begun)

59.10.5. In a country, the houses of the inhabitants being represented by points on the plane, two Laws
act:

1) A person can play basketbol only if (s)he is taller the majority of his/her neighbors.
2) A person has the right for free usage of the public transport only if (s)he is shorter the majority of

his/her neighbors.
According to Law, the person’s neighbors are the inhabitants living in side the circle centered at the

person’s house. The humane Law lets each person to chose the radii for each section of the Law. Can not
less than 90% of the population play basketbol and not less than 90% have the right for free usage of the
public transport? (N. N. Konstantinov)

59.10.6. Prove that for any nth degree polynomial P (x) with natural coefficients there exists a k such
that the numbers P (k), P (k+1), . . . , P (k+1996) are not prime ones, if a) n = 1; )

¯
n is an arbitray positive

integer. (V. A. Senderov)

Grade 11
59.11.1. Positive numbers a, b and c satisfy equation a2 + b2 − ab = c2. Prove that (a− c)(b− c) ≤ 0.

(A. Egorov, V. Bugaenko)

59.11.2. Find a polynomial with integer coefficients whose roots are 5
√

2 +
√

3+ 5
√

2−√3. (B. Kukushkin)

59.11.3. In space, consider 8 parallel planes such that??? the distances between each two neighboring
ones are equal. A point is selected on each of the planes. Can the points selected be vertices of a cube?
(V. Proizvolov)

59.11.4. Prove that there are infinitely many natural numbers n such that n is representable as the sum
of squares of two natuaral numbers, while n− 1 and n+ 1 are not. (V. A. Senderov)

59.11.5. Point X outside of nonintersecting circles, ω1 and ω2, is such that the segments of the tangents
drawn from X to ω1 and ω2 are equal. Prove that the intersection point of the diagonals of the quadrilateral,
determined by the tangent points, coinsides with the intersection point of the common inner tangents to ω1

and ω2. (S. Markelov)

59.11.6. A 2n×n table consists of all possible lines of length n composed from numbers 1 and −1. Part
of the numbers was replaced with zeros. Prove that one can choose several lines whose sum (if we consider
each line as a number) is zero. (G. Kondakov)
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Olympiad 601 (1997)

Grade 8
60.8.1. In certain cells of the chess board stand some figures. It si known that on each horizontal line

stands at least one figure and on different horizontals a different number of figures stand. Prove that it is
possible to mark 8 figures so that on each horizontal and each vertical stands exactly one marked figure.
(V. Proizvolov)

60.8.2. From a volcano observatory to the top of Stromboly volcano one has to take a road and then a
passway, each takes 4 hours. There are two craters on the top. The first crater erupts for 1 hour and then is
silent for 17 hours, next all over again, it erupts for 1 hour and then is silent for 17 hours, etc. The second
crater erupts for 1 hour and then is silent for 9 hours, then it erupts for 1 hour, then is silent for 17 hours,
etc. During the eruption of the first crater it is dangerous to take both the passway and the road, during
the eruption of the second crater it is dangerous to take the passway only. At noon scout Vanya saw that
both the craters simultaneously started to erupt. Will it be ever possible for him to mount the top of the
volcano without risking his life? (I. Yashchenko)

60.8.3. Inside of the acute angle ∠XOY points M and N are taken so that ∠XON = ∠Y OM . On
the segment OX a point Q is taken so that ∠NQO = ∠MQX; on segment OY a point P is taken so that
∠NPO = ∠MPY . Prove that the lengths of the broken lines MPN and MQN are equal. (V. Proizvolov)

60.8.4. Prove that there exists a positive non-prime integer such that if any three of its neighboring
digits are replaced with any given triple of digits the number remains on-prime. Does there exist a 1997-digit
such number? (A. Shapovalov)

60.8.5. In the rhombus ABCD the measure of ∠B = 40◦, E is the midpoint of BC, F is the base of
the perpendicular dropped from A on DE. Find the measure of ∠DFC. (M. Volchkevich)

60.8.6. Banker learned that among similarly looking golden coins one is counterfeit (of less weight).
Banker asked an expert to determine the coin by means of a balance without weights and demanded that
each coin should participate in not more than two weighings (otherwise it will get too worn out and loose
its market value). What largest number of coins should Banker have had to ensure the fulfilment of the
expert’s task? (A. Shapovalov)

Grade 9
60.9.1. In a triangle one side is 3 times shorter than the sum of the other two. Prove that the angle

opposite the said side is the smallest of the triangle’s angles. (A. Tolpygo)

60.9.2. On a plate lie 9 different pieces of cheese. Is it always possible to cut one of them into two parts
so that the 10 pieces obtained were divisible into two portions of equal mass of 5 pieses each? (V. Dolnikov)

60.9.3. A convex octagon AC1BA1CB1 satisfies: AB1 = AC1, BC1 = BA1, CA1 = CB1 and ∠A +
∠B + ∠C = ∠A1 + ∠B1 + ∠C1. Prove that the area of 4ABC is equal to a halv area of the octagon.
(V. Proizvolov)

60.9.4. Along a circular railroad n trains circulate in the same direction and at equal distances between
them. Stations A, B and C on this railroad (denoted as the trains pass them) form an equilateral triangle.
Ira enters station A at the same time as Alex enters station B in order to take the nearest train. It is knows
that if they enter the stations at the same moment of time as the driver Roma passes a forest, then Ira takes
her train earlier than Alex; otherwise Alex takes the train earlier than or simultaneously with Ira. What
part of the railroad goes through the forest? (V. Proizvolov)

60.9.5. 2n sportsmen twice met at a circle tournament. Prove that if the sum of points of each altered
not less by n (during the second tournament), it altered by exactly n. (V. Proizvolov)

60.9.5. Let 1 + x + x2 + · · · + xn−1 = F (x)G(x), where n > 1 and where F and G are polynomials,
whose coefficients are zeroes and units. Prove that one of the polynomials F and G can be represented in
the form (1 + x+ x2 + · · ·+ xk−1)T (x), where k > 1 and where T is also a polynomial whose coefficients are
zeroes and units. (V. Senderov, M. Vyaly)

Grade 1
0

60.1.1. Is there a convex body distinct from ball whose three orthogonal projections on three pairwise
perpendicular planes are discs? (A. Kanel-Belov)
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60.1.2. Prove that among the quadrilaterals with given lengths of the diagonals and the angle between
them the parallelogram has the least perimeter. (Folklore)

60.1.3. Consider a quadrileteral. a) As the quadrileteral was circumwent clockwise, each side of the
quadrileteral was extended by its length in the direction of the movement. It turned out that the endpoints
of the segments constructed are the vertices of a square. Prove that the initial quadrilateral is a square.

b) Prove that if as a result of the procedure similar to the above-discribed is applicable to an n-gon we
get a regular n-gon, than the initial n-gon is a regular one. (M. Evdokimov)

60.1.4. Given real numbers a1 ≤ a2 ≤ a3 and b1 ≤ b2 ≤ b3 such that
a1 + a2 + a3 = b1 + b2 + b3,

a1a2 + a2a3 + a1a3 = b1b2 + b2b3 + b1b3.

Prove that if a1 ≤ b1 and a3 ≤ b3. (Folklore)
60.1.5. In a circle tournament with more than two participants the coefficient of each participant was

defined to be the sum of points scored by those defeated by the sportsman considered. It turned out that
the coefficients of all participants are equal. Prove that all the partiipants scored equal number of points.
(B. Frenkin)

60.1.6. Consider the powers of 5: 1, 5, 25, 125, 625, . . . Consider the sequesnce formed by their first
digits: 1, 5, 2, 1, 6, . . . Prove that any segment of this sequence written in reverse order will be encountered
in the sequence of the first digits of the powers of 2: 1, 2, 4, 8, 1, 3, 6, 1, . . . (A. Kanel-Belov)

Grade 1
1

60.1.1. On sides AB, BC and CA of 4ABC points C ′, A′ and B′, respectively, are marked. Prove that
the area of 4A′B′C ′ is equal to

AB′ ·BC ′ · CA′ +AC ′ · CB′ ·BA′
4R

,

where R is the radius of hte circumscribed circle of 4ABC. (A. Zaslavsky)
60.1.2. Compute ∫ π/2

0

(
cos2(cosx) + sin2(sinx)

)
dx.

where R is the radius of hte circumscribed circle of 4ABC. (M. Vyaly)
60.1.3. Consider three functions:

f1(x) = x+
1
x
, f2(x) = x2, f3(x) = (x− 1)2.

The Rule lets you to add subtract and multiply these functions (in particular, you can square and raise to
higher powers, etc.), multiply by an arbitrary number, add an arbitrary number to your result and perform
the above described operations with the expressions obtained. Get in this way 1

x . Prove that if one of the
functions f1, f2 or f3 is taken out of the consideration, then it is impossible to get 1

x in the way described.
(M. Evdokimov)

60.1.4. Is it possible to divide a regular tetrahedron with edge 1 into regular tetrahedrons and octahe-
drons with the lengths of their edges less than 1

100? (V. Proizvolov)
60.1.5. Positive numbers a, b and c are such that abc01. Prove that

1
1 + a+ b

+
1

1 + b+ c
+

1
1 + c+ a

≤ 1.

(G. Galperin)
60.1.6. On the plane, consider a finite number of strips with the sum of their widths equal to 100 and a

disc of radius 1. Prove that it is possible to translate parallelly each strip so that the totality of translated
strips will cover the disc. (M. Smurov)
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Selected problems of Moscow mathematical circles

The following are problems we find most interesting among those offered to the participants of mathe-
matical clubs, to the winners of the Moscow Olympiads when they were coached to International Olympiads
and also some problems from the archives of the Moscow Olympiad jury which were not used in any of the
tournaments, and, therefore, are not well known. The grade for which the problem was intended is given in
parentheses.

1.(7-9). a) Find the sum of the digits of the number 123456789101112 . . . 999998999999.
b) How many digits 7 are there in this number?
2.(8-10). Find the least positive integer ab...c without any zeroes in its decimal notation, such that its

sum with itself written in reverse order (i.e. the sum with the number c...ba), is a number whose digits can
be obtained by a permutation of the digits of the original number.

3.(9-10). Are there irrational numbers x and y for which xy is a rational number?
4.(8-10). We place 1’s and −1’s at the vertices of a cube, one number per vertex. In the center of each

face we put the product of the numbers at the vertices of this face. Can the sum of the 14 numbers obtained
be equal to 0? Can it be equal to 7?

5.(8-10). a) There is a finite number of stars in space. The number of and directions to visible stars can
be determined from an observation post. No single observation, however, determines the exact number of
stars, as some might be hidden behind the others. It is only possible to say, after several observations, that
the number of stars in the sky is not less than the greatest of the numbers of stars visible from observation
posts. Can the exact number of stars in the sky be still determined after several observations? If so, what
is the least number of observation posts needed to ascertain the exact number of stars in space?

b) Solve the same problem on a Flatland, the planar Universe.
6.(7-9). Consider n identical cars on a circular highway. The total quantity of fuel in all these cars is

enough for one of them to cover the whole circle. Is it possible to find a car that can drive around the entire
circle by borrowing fuel from other cars along the way for any arrangement of cars and distribution of fuel
among them?

7.(8-10). Find non-negative integer solutions of the equation:

x4 + 2x3 + x2 − 11x+ 11 = y2.

8.(8-10). On the numerical line, paint red all points that correspond to positive integers of the form
81x+ 100y, where x and y are positive integers; paint the remaining integers blue. Find a point on the line
such that any two points symmetrical with respect to it are painted different colors.

9.(9-10). Integers x1, x2, . . . , xn; y1, . . . , ym satisfy the inequalities

1 < x1 < x2 < . . . < xn < y1 < . . . < ym and x1 + . . .+ xn > y1 + . . .+ ym.

Prove that x1x2 . . . xn > y1y2 . . . ym.
10.(10). Prove that it is possible to cut any two polyhedrons of equal volume into several tetrahedrons

of pair-wise equal volumes.
11.(8-9). Consider a square ABCD and point O inside it. Prove that

135◦ < ∠OAB + ∠OBC + ∠OCD + ∠ODA < 225◦.

12.(10). A) Given a finite set of n points not in the same straight line. For any two pairs of given
points belonging to two different lines the intersection point of these lines also belongs to the set of given
points. Prove that all points of the set but one lie on the same line.

B) Is it possible to draw n straight lines through point O in space so that for any two of these lines
there is a third straight line from the same set, which is perpendicular to the two lines for (a) n = 99 or (b)
n = 100?

(c) Point out all n for which there exists an arrangement of n lines satisfying the condition from heading
B) and describe all possible arrangements of these lines in space.

13.(7-10). A pie is of the form of a square lamina. Two perpendicular straight lines cut the pie into
four parts. Three of these parts weigh 200 g each. What is the weight of the pie?

14. (10). There are n point-size searchlights that illuminate angles (the vertex and the legs included)
α1, α2, . . . , αn on a plane. If these searchlights were placed at one point they would have illuminated the
whole plane. Prove that for any n it is possible to permute the locations of searchlights (without rotating
searchlights themselves) so that they would still illuminate the entire plane.
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15.(8-9). Consider convex quadrilateral ABCD such that AC = BD, ∠B = 2∠C, ∠C + ∠D = 90◦.
Find angles ∠B and ∠D of the quadrilateral.

16.(9-10). A) There are 9 points on the surface of a cube with edge 1. Prove that two of these 9 points

are not farther than
√

3
2 from each other.

B) Can the surface of the cube with edge 1 have (a) 8 points and (b) 7 points so that the distance
between any two of them is > 1?

17.(9-10). a) The projections of a solid to two planes in space are circles. Prove that these circles are
equal.

b) The projections of a convex n-gon to two non-parallel planes in space are regular n-gons. Prove that
these projections are equal n-gons.

18.(8-9). The sum of the digits in the decimal expression of 5n is less than 10100. Is the set of such
positive integers n finite or infinite?

19.(7-9). Prove that no digit is repeated 5 000 001 times in a row in the first 10 million digits of the
decimal representation of

√
2 (the integer part included).

20.(7-9). There are 1 000 airports in the land Shvambrania, and the distances between every two
airports are distinct. Suppose an airplane departs from each airport and flies to the nearest airport. What
greatest number of airplanes can land in an arbitrary airport if Shvambrania is a) a plane? b) a sphere?

21.(9-10). Several spherical holes are made in a cheese cube. Prove that it is possible to cut the cheese
into convex polyhedrons so that there is exactly one hole inside each of the polyhedrons.

22.(10). Let sinα = 3
5 . Prove that sin 25α = n

525 , where n is an integer not divisible by 5.
23.(7-10). Three bulbs — one blue, one green, and one red — are somehow connected by wires to n

switches. Each switch can be in one of three positions. For any position of all the switches exactly one bulb
is turned on, but if all n switches are simultaneously flipped (each by its own of the 2 possible ways), another
bulb is turned on. Prove that the color of the bulb which is turned on is determined by one fixed switch and
does not depend in any way on the other switches.

24.(8-10). A grasshopper hops on an infinite chessboard with squares of side 1 moving with each hop
a distance of α to the right and β upwards. Prove that if numbers α, β and α

β are irrational, then the
grasshopper will necessarily reach a black square.

25.(9-10). Prove that tan 3π
11 + 4 sin 2π

11 =
√

11.
26.(8-10). Solve in positive integers:

520(xyzt+ xy + xz + zt+ 1) = 577(yzt+ y + z).

27.(7-8). Prove that if at all times at least one of ten uniformly functioning alarm clocks shows correct
time, then at least one of them always shows correct time.

28.(9-10). The space is divided into identical and identically oriented parallelepipeds.
a) Prove that for each parallelepiped at least 14 of the parallelepipeds have a common point with it.
b) What is the least number of parallelepipeds that have a common point with a given parallelepiped if

the parallelepipeds are still identical but not equally oriented?
29.(8-10). A triangular lamina of area 1 is cut into 4 parts (three triangles and 1 quadrilateral) by two

straight cuts. Three parts have the same area. Find the area of every part.
30.(8-9). Prove that if the arithmetic mean of the first 101010

digits in the decimal expression of 2−√2
is between 4 1

3 and 4 2
3 , then the same is true for

√
2− 1.

31.(8-10). Prove that at any given moment there is a point on the surface of the Sun (considered as a
sphere) from which one can see not more than 3 planets (out of 9 known ones).

32.(7-9). There are two containers: the first one has 1l of water in it, the second one is empty. We pore
half of the water from the first container into the second one; then we pore one third of the water from the
second container back into the first container; then we pore one fourth of the water from the first container
into the second container, and so on. How much water is there in the first container after 12345 refills?

33.(9-10)*. Prove that it is possible to arrange infinitely many squares with sides 1
2 , 1

3 , 1
4 , 1

5 , . . . , 1
n ,

. . . inside a square with side 5
6 so that they do not overlap, but it is impossible to do this in a square of a

smaller side.
34.(8-10). Given a wooden ball, a compass, and a piece of paper, draw on the paper a circle of radius

equal to that of the ball. (It is allowed to draw circles on the ball.)
35.(9-10). A square is divided in two ways into 100 parts of equal area. Prove that it is possible to

select 100 points such that after each partition there is exactly one point in every part.
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36.(8). Prove that the number(
24 + 1

4

)(
44 + 1

4

)(
64 + 1

4

)(
84 + 1

4

)(
104 + 1

4

) (
124 + 1

4

)
(
14 + 1

4

)(
34 + 1

4

)(
54 + 1

4

)(
74 + 1

4

)(
94 + 1

4

) (
114 + 1

4

)

is an integer, and find the number by simplification without actual calculations.
37.(8-10). A table is entirely covered with 100 square tablecloths, A round hole burnt through the

cover damageing each of the tablecloths. Each tablecloth would have covered the table but for the hole.
Prove that some three of the tablecloths completely cover the table.

38.(8-10). Given 40 dice with the sum of the numbers on the opposite faces of each die equal to 7.
Place the dice on one another to form a parallelepiped. Is it possible to rotate each die about its vertical
axis so that the sums of the numbers on four lateral sides of the parallelepiped were equal?

39.(8-10). Concider two concentric circles, two parallel chords l and m tangent to the inner circle, point
A on the outer circle between l and m; tangents to the inner circle through A, and their intersection points
C and D with the chords. Prove that the product AC ·AD does not depend on the position of A.

40.(8-10). Prove that the difference between the numbers

1− 1

2 + 1
3 + 1

4 + . . . 1
(n− 1) + 1

n− 1

and 1− 1

2 + 1
3 + 1

4 + . . . 1
(n− 1) + 1

n− 1 + 1
n

is less than 1
(n− 1)!n!

.

41.(8-9). Points A, B and C move uniformly along three circles in the same direction with the same
angular velocity. How does the center of mass of triangle ABC move?

42.(8-9). Numbers 1, 2, 3, . . . , 1974 are written on a blackboard. In one move we can erase any two
numbers of the set and write in their place the absolute value of their difference. After 1973 moves one
number is left. What number can it be?

43.(8-9). A and B are the tangent points of straight lines a and b and a circle. We selected point C on
line a, and point D on line b. Segment AB meets segment CD at point M . Prove that CA/CM = DB/DM .

44.(8-10). Given p+1 distinct positive integers for a prime p, prove that among them there is a pair of
numbers x and y such that the quotient after the division of the greater of these two numbers by GCD(x, y)
is not less than p+ 1.

45.(9-10). Prove that
k∑

n=1
an cosnx ≥ −1 for any x, then a1 + . . .+ ak ≤ k.

46.(9-10). Two people play a game in which one thinks a five-digit number consisting of 0’s and 1’s,
and the other must guess it.

Guesser names a five-digit number consisting of 0’s and 1’s, and Thinker tells Guesser at how many
places the digits of this number coincide with the corresponding digits of the one Thinker has in mind. Is it
possible to guess the number in 3 guesses?

47.(9-10). A closed broken line is situated on the surface of a cube with edge 1. On each face of the
cube there is at least one segment of the line. Prove that the length of the broken line is not less than 3

√
2 .

48.(9-10). Prove that for any integer n ≥ 2 we have

n
(

n
√
n+ 1− 1

) ≤ 1 +
1
2

+ . . .+
1
n
≤ 1 + n

(
1− 1

n
√
n

)
.

49.(7-10). On a white plane there sit a man and a black cat. The man is superstitious and does not
want to cross the cat’s path; the cat, full of spite, wants to move along a closed non-selfintersecting path
so as to avoid the man and not give him a possibility to avoid the cat’s path. Is it possible for the cat to
circumvent the man within a finite length of time if its top speed is λ > 1 times that of the man? (The cat
and the man may not be at the same point simultaneously.)

50.(8-10). There are 650 distinct points inside a disc of radius 16. Prove that there is an annulus with
inner radius 2 and outer radius 3 on which lie at least 10 of the given points.

51.(8-10). Is there a positive integer n for which any rational number between 0 and 1 can be expressed
in the form of the sum of n reciprocals of positive integers?

52.(8-10). A regular 2n-gon is inscribed in a regular 2k-gon, i.e., each vertex of the 2n-gon lies on the
boundary of the 2k-gon. Prove that 2k is divisible by n.
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53.(9-10). A cube contains a convex polyhedron M whose projection to each face of the cube covers
the entire face. Prove that the volume of the polyhedron M is not less than one third of the volume of the
cube.

54.(9-10). A city of the form of a square with side 10 km is divided into n2 identical square blocks.
The blocks are numbered from 1 to n2 so that two blocks with consecutive numbers have a common side.
Prove that a cyclist can find any block (s)he needs by riding not more than 100 km.

55.(8-10). In convex pentagon P1 we drew all the diagonals. As a result P1 split into 10 triangles and
one pentagon, P2. Let S be the difference between the sum of the areas of the triangles adjacent to the sides
of P1 and the area of P2.

Let us perform the above operation (draw diagonals, etc.) with the inner pentagon P2; let P3 be its
inner pentagon. Let s be the difference between the sum of the areas of the triangles adjacent to the sides
of P2 and the area of P3. Prove that S > s.

56.(8). Find the greatest number of vertices of a non-convex non-selfintersecting n-gon from which no
inner diagonal can be drawn.

57.(8). At every integer point of the numerical line a positive integer is written. Between every two
neighboring numbers we write their arithmetic mean and then erase the original numbers. We repeat this
operation many times. It turns out that all numbers obtained after each step are positive integers. Is this
sufficient to conclude that after some step all numbers will be equal?

58.(9-10). A 3 × 3 × 3 cube is constructed of 27 cubic blocks with side 1. Each block is either white
or black. Every hour a painter comes and white-washes all blocks with an even number of black neighbors,
and paints black all the other blocks. Prove that eventually all blocks will be painted white.

59.(9-10). In space, there are n distinct points of equal mass. Consider sphere S1 of radius 1 and with
center at one of the given points. Let S2 be the sphere of radius 1 (perhaps identical to S1) with center at
the center of mass of all the given points that are inside of S1. Let S3 be the sphere of radius 1 (perhaps
identical to S2) with center at the center of mass of all the given points that are inside S2, etc. Prove that
Sk = Sk+1 = ... for some k.

60.(8). You are allowed to make two operations with ordered n-tuples of 0’s and 1’s: to change the first
(left) digit and also to change the digit following the first (from the left) 1. Prove that such operations can
turn any set into any other set.

61.(8). There are four equal circles O1, O2, O3, O4 inside a triangle such that circle O1 is tangent to
two sides of the triangle; circle O2 is tangent to another pair of sides of the triangle; circle O2 to the third
pair of sides; and circle O4 is tangent to the first three circles.

Prove that the center of O4 lies on the same straight line as the centers of the circles inscribed in and
circumscribed around the triangle.

62.(8-10)*. Two infinite (in both ways) non-selfintersecting broken lines are drawn on an infinite piece
of graph paper. The segments of the broken lines are on the lines of the paper, and each broken line passes
through all intersections of the grid of the paper. Must the broken lines have common segments?

63.(8-10). Denote the sum of the first n primes by Sn. Prove that there is a perfect square between Sn

and Sn+1.
64.(8-10)**. Consider square and an equilateral triangle are drawn on a plane. Prove that one of the

distances between a vertex of the square and a vertex of the triangle is irrational.
65.(9-10)**. A square town is divided into n2 square blocks. The streets inside the town are two-way

ones and the street skirting the town is a one-way one. A cyclist moves in the town in accordance with
the following traffic rules: (s)he moves only along the right side of any street and does not turn left at
intersections; on the one-way street that surrounds the town, (s)he moves so that all houses are on his/her
right.

For what n can the cyclist ride through the whole town passing once each side of each street (and once
the only side of the one-way street around the town)? Try to find the greatest possible set of such values of
n.

66.(8). For an inscribed octagon A1A2A3A4A5A6A7A8 we have A1A2 ‖ A5A6, A2A3 ‖ A6A7, and
A3A4 ‖ A7A8. Prove that A4A5 = A1A8.

67.(8-9). A square with side n is divided into n2 square cells with sides 1. Can n2 different numbers
be written in the cells so that in any square whose sides coincide with the sides of the given n× n square or
with the lines that divide it, the product of the numbers along one longest diagonal is equal to the product
of the numbers along the other longest diagonal?

68.(8-10). A road is straight but not flat. Is it possible for three people to walk from points whose
distances from the beginning of the road are 0, 1 and 2, respectively, to points whose distances from the
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beginning of the road are 1000, 1001, and 1002, respectively, without passing one another and so that the
last person sees the first one all the time and does not see the second person for a single moment? The
heights of the people do not matter, i.e., a short one can see through a tall one.

69.(8). Denote the sum of the digits of a number N by S(N). Prove that there is an infinite number
of N ’s that have no zeroes in their decimal expression and such that a) N is divisible by S(N) or b) N is
divisible by S(N) + 1.

70.(8-10). Prove that it is possible to construct a convex equiangular 1980-gon from segments of lengths
1, 2, 3, . . . , 1980. Is the same true for a 1981-gon?

71.(9-10). Functions f and g defined on the real line are such that the equality

f(x− y) + f(x+ y) = 2f(x)g(y)

holds for all x and y. Prove that if f is not identically equal to zero, then the values of g are not less than
−1 for all y.

72.(9-10).1 We have a complete graph: n points, every pair of which are connected by a segment. Each
segment is painted either red or blue, and from any point one can get to any other point both along blue
lines only and along red lines only.

Prove that there are four points among these n points such that the complete graph of these four points
and the segments connecting them has the same property: one can get from any point to any other one both
along blue lines only and along red lines only.

73.(9-10). Polynomial P (x) is non-negative for all real x. Are there two polynomials Q(x) and R(x)
such that P (x) = Q(x)2 +R(x)2?

74.(7-10). Find all integer solutions:

x2 − 2y2 = 6t2 − 3z2.

75.(10). A plane flew from town Γ1 to town Γ2. During its entire flight it was seen from observation
posts A and B hidden somewhere on segment Γ1Γ2. Prove that

a) there was one second during which the plane moved from some point X to a point Y of its trajectory
in such a way that ∠XAY = ∠XBY ;

b) statement a) is false if at least one of the observation posts is out of segment Γ1Γ2, no matter how
close points A and B are from points Γ1 and Γ2, respectively.

Convention. We assume that the plane moves in space at a variable speed; the time of its flight is
more than 1 sec; towns T1 and T2, observation posts A and B, and the airplane are all points.

76.(9-10). A swimming pool has the form of a convex quadrilateral with trees growing in its vertices.
Each tree casts a circular shadow with its center in respective vertex. It is known that the swimming pool
is entirely in the shade. Prove that the shadow of some 3 trees entirely covers the triangle in whose vertices
these trees grow.

77.(8-10). A colony of a finite number of bacteria lives on a straight line. Some bacteria may die at
moments 1, 2, 3, . . . ; no new bacteria are ever born. Those and only those bacteria die for which there are
no bacteria at a distance of 1 on their left and

√
2 on their right.

Can such a colony of bacteria live forever?
78.(9-10). Is there a finite set of points on a plane such that for each of the points there are at least

1000 other points of this set the distance between which and this point is exactly equal to 1?
79.(10). A dodecahedron with its vertices painted red is rolled over its edges on a plane, its vertices

leaving red point marks. Prove that for any disc of any radius on the plane, it is possible to roll the
dodecahedron so that some vertex leaves a red mark inside the disc.

80.(7-8). There are n boxes, some of which have n boxes inside them, some of which again have n boxes
inside them, etc. There are altogether k boxes with other boxes inside them. What is the total number of
boxes?

81.(8-10). Prove that if x > 1, y > 1, and xy + yx = xx + yy, then x = y.
82.(9-10). Prove that if a, b, c are the lengths of the lateral edges of a triangular pyramid and α, β, γ

are the angles between the edges, then the volume of the pyramid is equal to

V =
abc

3

√
sin α + β + γ

2 sin α− β + γ
2 sin α + β − γ

2 sin −α + β + γ
2 .

83.(10). a) Any section of a solid by a plane is a disc. Prove that the solid is a ball.
b)*** Any section of a solid is a polygon. Prove that the solid is a polyhedron.

1Suggested by V.Gurvich for the selection competition to ??? in 1971.
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84.(7-10). An organization committee of a Math Olympiad consists of 11 members. The problems for
the Olympiad are kept in a strongbox. How many locks must the strongbox have and how many keys should
every member of the committee have so that any six members can open the strongbox whereas no fewer
group can do it?

85.(7-9). The hands of a clock are fixed but the dial can rotate. Prove that it is possible to turn the
dial so that the clock shows a correct time between 12:00 p.m. and 1:00 p.m.

86.(8-10). Prove that if 0 < α1 < α2 < . . . < αn <
π
2 , then

tanα1 <
sinα1 + . . .+ sinαn

cosα1 + . . .+ cosαn
< tanαn.

87.(7-8). Prove that if
1

x+ y + z
=

1
x

+
1
y

+
1
z
,

then two of the numbers x, y, z are equal in absolute value but have opposite signs.
88.(7-8). For which n ∈ N do there exist positive integers k1 < k2 < . . . < kn such that

1
k1

+
1
k2

+ . . .+
1
kn

= 1 ?

89.(7-10). Prove that if the tips of the legs of a table are vertices of a square, then it is possible to
place the table on an uneven floor so that the table does not rock, i.e. so that all four tips of the legs touch
the floor.

90.(8-10). For a, b, c > 0 solve the system for unknowns x, y, z:




a
x − b

y = c− xy,
b
z − c

x = a− xz,
c
y − a

z = b− yz.
91.(10). A sphere with center O is inscribed in tetrahedron ABCD. Prove that if ∠ODC = 90◦, then

planes AOD and BOD are perpendicular.
92.(8-10). We write parentheses in the expression x1 : x2 : x3 : . . . : xn with distinct xi’s to indicate the

order in which the numbers should be divided. The result is written in the form of the following fraction:
xi1xi2 . . . xik

xj1xj2 . . . xjn−k

.

How many distinct fractions of this kind is it possible to derive from the given expression by different
arrangements of parentheses therein?

93.(7-9). Three soccer teams played the same number of matches with one another. Is it possible that
the winner won the least number of matches while the team that took the last place won a maximal number
of games?

94.(7-10). Prove that from the edges of an arbitrary tetrahedron it is possible to construct two triangles
so that each edge is a side of one of the triangles.

95.(9-10). Consider three straight lines in space, each two of them skew and not all parallel to a plane.
How many straight lines can intersect all three given lines?

96.(8-9). Twelve laces are used to make a net in the form of a cube with side of 10 cm. Inside the net
is a spherical balloon. It is inflated so that the net fits tight on its surface. Find the radius of the inflated
balloon.

97.(7-10). An entire rectangular map of Moscow lies on top of another similar map of a larger scale
(the sides of the maps are not necessarily parallel). Prove that it is possible to puncture both maps with a
pin so that the point of the puncture denotes the same point of the city on both maps.

98.(8-10). Is 22225555 + 55552222 divisible by 7?
99.(9-10). Three rods of equal lengths are used to construct a rigid spatial structure in which the rods

do not touch one another but are connected by non-elastic threads fastened to their ends.
a) What least number of threads is necessary for this?
b)∗ What ratios of rod lengths and thread lengths make such a construction possible?
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Hints to selected problems of Moscow mathematical circles

2. It is easy to see that there are no 1- and 2-digit examples. There are no 3-digit examples (for any
base, not only decimal) either: indeed, it is clear that in the sum abc + cba neither the first nor the last
figure can be equal to either a or c.

A case-by-case checking shows that the least answer contains 5 digits.
Remark. If the base were not 10, but, say, 9, there would have been 4-digit examples, say, 2 5639 +

36529 = 63259. Similar examples exist for any base divisible by 3 starting with 6.
4. Prove that the sum of these 14 numbers either is equal to 14 (if all vertices are labeled by 1’s) or

differs from 14 by a multiple of 4, i.e. can be 10, 6, 2,−2, . . . . It suffices to prove that by changing the sign
of one of the units at a vertex we alter the sum by a multiple of 4.

9. Make use of the fact that if 1 < z < t then z + t < zt .
10. First, divide both polyhedrons into arbitrary tetrahedrons (e.g., one can first divide a polyhedron into

pyramids by connecting its inner point with the vertices). Then, selecting the smallest of the tetrahedrons
obtained, one should cut a tetrahedron of the same size from one of the remaining tetrahedrons. Further,
apply the induction on the number of tetrahedrons.

11. Let M be the center of square ABCD and let O lie, for example, in the triangle ABM . Now, prove
that ∠OAB + ∠OCD ≤ 90◦. The inequality ∠ODA < 45◦ being taken into account, it suffices to prove the
estimate from above.

The estimate from below is derived in the same way from ∠OBC + ∠ODA ≥ 90◦.
18. If this set is infinite, the decimal representation of 5n would contain too long sequences of zeros for

a large n.
21. Define the distance from a point outside a sphere to the sphere as the length of the tangent from

the point to this sphere. For each spherical hole, consider the set of all points “distanced” from the sphere
of the hole not farther than from any other hole. It is easy to prove that for two spherical holes we thus get
two half-spaces. In the general case, each of the sets obtained is a convex polyhedron containing a sphere.
All polyhedrons adjoining each other entirely fill up the cube.

24. First, find an integer m such that the numbers1 {mα} and {mβ} are both small (say, smaller than
0.01) but their ratio is not less than 2.

27. If the alarm-clock ticks uniformly but generally shows wrong time, then during, say, an hour there
is only a finite number of moments when it indicates a right time.

28. a) It is easy to demonstrate that the parallelepipedal lattice can be replaced by that of cubes and
the solution of the problem will not change.

Circumscribe the ball round each of 8 vertices of the given cube (from cubic lattice) centered at each
vertex; let the volume of each ball be equal to 1. The sum of the balls’ volumes is equal to 8 and the volume
of the balls inside the cube is equal to 8 × 1

8 = 1. So the remaining 8 − 1 = 7 volume units fall on the
neighboring cubes. Let us prove that each neighboring cube has not more than 1

2 of the volume unit, and,
therefore, there number is not less than 14.

Indeed, if the vertex of the given cube lies inside the face of the neighboring cube, this volume is 1
2 of

the volume unit (the neighboring cube does not touch other balls).
If the vertex of the cube lies on an edge of the neighboring cube, one more vertex can lie on its edges

and the total volume does not exceed 2× 1
4 = 1

2 of the volume unit.
Finally, if the vertex of our cube is also the vertex of the neighboring cube, this cube may touch maximum

4 more vertices of our cube and this gives a volume of 4× 1
8 = 1

2 of the volume unit.
b)2 See Fig. 99.

32. After any odd number of refills both containers have the same amount of water.

36. Make use of the identity
(
n4 + 1

4

)
=

(
n2 + n+ 1

2

)(
n2 − n+ 1

2

)
.

37. Apply Helly’s theorem: If any 3 of n given convex figures (e.g., discs) on the plane have a common
point, then this point belongs to all of them.

39. Prove that AC · AD = R2, where R is the radius of the exterior circle. This follows from the fact
that 4OAC ∼ 4OAD.

1Here {x} is the fractional part of x.
2We thank M. Urakov who suggested this extension.
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Figure 99. (Hint A28)

42. Apply induction with the following hypothesis: the procedure described in the problem allows one
to get from 1, 2, . . . , 2k any number 0 to 2k whose parity coincides with that of k.

47. The length of the projection of the given broken line to any edge is > 2. Therefore, the sum of these
projections is ≥ 6. Now, prove that every chain of the broken line is not more than

√
2 times shorter than

the sum of its projections. Make use of the fact that one of the projections of any chain is always equal to 0.
48. Make use of the Cauchy inequality for the arithmetic mean and the geometric mean. For the left

inequality make use of the fact that

n
√
n+ 1 = n

√
2
1 · 32 · 43 · . . . · n+ 1

n < 1
n

(
2
1 + 3

2 + . . .+ n+ 1
n

)
.

Find on your own a similar inequality for the right side of the problem.
52. Prove first that the centers of both polygons coincide.
54. The cyclist should act as follows: First, (s)he should divide the square 10 × 10 into 4 squares with

the midlines and find out which of the squares thus obtained contains the city block (s)he is looking for
(assuming that the numbers of adjacent blocks differ by 1); then divide this quarter of the square in a
similar way and select the 16-th part (2-nd order square) which contains the block (s)he wants, etc., see
Fig. 100.

To evaluate in each particular case the longest path the cyclist takes requires to sum the number of
stages to the appropriate square of the highest order.

The first stage takes 25 km (or a bit more if n is odd); each next stage takes one half of the preceding
one.

56. Prove that of two neighboring vertices, only one can satisfy the condition of the problem.
57. First, prove that if not all numbers are equal and m is the smallest of them (it may occur not once

but many, even an infinite, number of times) then eventually all numbers on any segment of finite length
become greater than m.

58. Let us write 1 on each white cube and −1 on each black cube. The painter’s performance is an
operation that replaces every number by the product of its neighboring ones. It is easy to deduce that it
suffices to consider the case of one black and 26 white cubes; the general case is obtained from this one by
the above “multiplication”. It remains to consider 4 variants (deal with them on your own): when the black
cube is in the corner; on the edge; in the center on the face; in the center of the cube.

59. Consider the function f(X) =
∑(

1− |AiX|2
)
, where the sum runs over the terms with Ai contained

in the ball of radius 1 centered at X. Prove that the value of f increases when we replace X with the center
of mass of Ai’s.

60. Prove by induction on n that any set can be reduced by the described operations to any of the
following two forms: 000...00 or 000...01.

61. First, notice that the center O4 of the circle tangent to the given circles with centers at O1, O2, O3

is the same as that of the circle circumscribed about triangle O1O2O3 and their radii differ by the radius of
one of the given circles, O1, O2, or O3. The intersection point of the bisectors of 4ABC is the same as that
of 4O1O2O3 (the latter are continuations of the former), i.e., point O is the center of the circles inscribed
into 4ABC and 4O1O2O3. At the same time, O is the center of a homothety for the homothetic triangles
4ABC and 4O1O2O3 (since AB ‖ O1O2, BC ‖ O2O3, AC ‖ O1O3).
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Figure 100. (Hint A54)

Figure 101. (Hint A56)

Let point O′ be the center of the circle circumscribed about 4ABC. It is easy to see that the homothety
with the center at O which sends 4O1O2O3 into 4ABC sends O4 to O′. Hence, O4 belongs to O′O, Q.E.D.

63. Let pn be the n-th prime. Make use of the two facts: that Sn is (for n > 4) less than the sum of the
first n odd numbers (which is equal to n2) and pn+1 > pn + 2.

67. First, prove that the condition of the problem will be satisfied if and only if the product of the
numbers in two opposite corners of any square is equal to the product of the numbers in the other two
corners. The simplest way to proceed now is to place the number piqj in the square at the intersection point
of the i-th row and the j-th column, where p1 and p2, . . . , pn, q1, . . . , qn are numbers arbitrary except that
all products piqj are distinct, e.g. take 2n distinct primes.

70. Make sure first that an equiangular hexagon can be composed of segments of length k+1, k+2, . . . ,
k + 6 (for any k), then the 1980-gon is composed of several hexagons. (Fig. 102 shows how it can be done
for a 12-gon.)

This construction is possible due to the fact that cos 60◦ = 1
2 is a rational number. Since cos 360◦

n is
irrational for n = 1981 and for the nontrivial divisors of 1981, the problem cannot be solved for the 1981-gon.

72. Use induction on n.
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Figure 102. (Hint A70)

91. Draw the plane π perpendicular to OD through the center O of the sphere. Then make use of the
facts that DC is parallel to π and π intersects lines parallel to DC on the planes of the faces ADC and
BDC.

92. Prove by induction that the result may be any fraction with x1 in the numerator and x2 in the
denominator.

The induction should start with n = 3. It should be born in mind that if (xn : xn+1) is substituted
for xn in the expression x1 : x2 : . . . : xn, the final result will be that xn+1 is in the numerator if xn was
in the denominator and vice versa. But if (P : xn) is replaced by ((P : xn) : xn+1) in the expression
(x1 : . . . : (P : xn)), where P is a bracket or just a letter xn−1, then xn+1 takes the same place as xn.

95. We draw all kinds of planes through skew line No. 2, each of which intersects skew lines No. 1 and
No. 3 at two points. By connecting the latter we get a straight line l that intersects all given lines Nos. 1, 2
and 3. (It is not difficult to show that only one of such lines can be parallel to line No. 2.)
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Answers to selected problems of Moscow mathematical circles

1. a) (1 + 2 + . . .+ 9) · (6 · 105) = 27 · 106; b) 6 · 105.

2. 12 897 + 79 821 = 92 718.

3. There are.

4. No. It can not.

6. Yes.

7. (x, y) = (1, 2) or (2, 5).

8. 1
2 (8100 + 181).

13. 800 g.

15. ∠B = 60◦, ∠D = 150◦.

16. A) ??
B) 7 points can be arranged in the way required but 8 points can not.

18. This set is finite.

29. There are two cases depicted on Fig. 103: in case b) S1 = S2 = S3 = 1
6 , S4 = 1

2 ; in case c)

S1 = S2 = S3 =
√

5− 1
4 , S4 = 7− 3

√
5

4 .

Figure 103. (Answ. A29)

36. 313.

38. No, this is not always possible.

42. Any odd number between 1 and 1973.

46. No.

49. Yes.

51. No, such n does not exist.

56.
[
n
2

]
; for an example see Fig. 104.

57. No.

62. No, see Fig. 105.

65. For any n.

67. Yes.
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Figure 104. (Answ. A56) Figure 105. (Answ. A62)

68. Yes, it is possible, see Fig. 106. The three persons should change their respective coordinates in the
following manner:

a) 2 −→ 1002 (visible from 0);
b) 0 −→ 0.5;
c) 1 −→ 1001 (not visible from 0.5);
d) 0.5 −→ 1000 (visible from 1002, not visible from 1001).

Figure 106. (Answ. A68)

73. Certainly.
77. No.
78. Yes.
80. (k + 1)n boxes.

84. The number of locks is
(11

5

)
= 462 and the number of keys for each member of the organizing

committee is
(10

5

)
= 252.

88. Any n ≥ 3.
92. 2n−2.
93. Yes; an example is shown in Table:

I II III Total Score
I XXXXX +1 =6 −0 +2 =3 −2 +3 =9 −2 15
II +0 =6 −1 XXXXX +4 =0 −3 +4 =6 −4 14
III +2 =3 −2 +3 =0 −4 XXXXX +5 =3 −6 13

95. Infinitely many.
98. Yes.
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Solutions to selected problems of Moscow mathematical circles

1. The given number is “built” of numbers 1 to 999999. The sum of digits, as well as the number of
digits 7, does not vary if we insert several zeroes, say, as follows : 000000 000001 000002 . . . 999999. Now, it
is clear that we have written 6 ·106 digits which constitute all possible combinations of 6 digits. Therefore, all
digits are encountered the same number of times, namely (6 · 106)710. this immediately implies the answer.

3. If
(√

2
)√2

is rational, take y = x =
√

2. Otherwise take x =
(√

2
)√2

, y =
√

2, then xy =
((√

2
)√2

)√2

=
(√

2
)2

= 2.

4. Let all vertices be labelled by 1; then the sum equals 14. By changing the number at a vertex we
change three more numbers (on thre adjacent faces), so the sum diminishes by 8 and becomes 6.

Now, let us change the numbers at one more vertex. Again, this induces a simultaneous change of 3
more numbers and one easily seas that the sum differs by ±8,±4 or 0. Namely, if four 1’s turn into −1’s,
then the sum diminishes by 8; if three 1’s and one −1 change, the sum diminishes by 4, and so on.

Therefore, the sum may differ from 14 by a multiple of −4, i.e., it can be 10, 6, 2, −2, ... So the sum
can not be equal to 0 or 7.

5. In this problem it is tacitly assumed that a star and an observation post are just points.
Observe that the answer for the 3-dimensional space differs from that for the 2-dimensional space (plane):

two observation points are enough for the former and three for the latter.
a) Since one observation point is obviously insufficient, choose point A at random and consider all rays,

starting from A, on which lie all stars visible from A. (“Consider all . . . ” means “plot the rays and indicate
their position in space relative to a preselected system of coordinates”.)

Now, consider all possible planes π1, π2, . . . , drawn through each pair of the rays. Let B be an arbitrary
point that does not belong to any of the planes π1, π2, . . . . Let us prove that B is the required observation
post since ALL stars in the sky can be seen from there, i.e., the stars visible from B do not hide behind each
other.

Indeed, all stars lie on straight lines that connect pairs of stars. Thus, all stars are in planes π1, π2, . . . .
Since point B does not belong to any of these planes by construction, B does not belong to any of the lines
connecting the stars. But the stars can hide behind each other only from an observer located on these lines.
Thus, two posts suffice.

b) The reasoning in a) does not apply since there is no point B outside the plane. Two observation
posts are not enough because for any chosen observation post B stars may happen to be on a ray coming
from point B and crossing the rays coming from the first point, A, to the stars; their intersection points may
happen to be stars.

So, select at random two points A and B from which not all stars may be visible. But all stars are sure
to lie at some of the points where rays connecting A with stars intersect the rays connecting B with stars.

It remains to draw all possible lines through all pairs of the intersection points of the two bunches of
rays with vertices at A and B, respectively, and to select a point, C, not belonging to either of these lines
or any of the rays from the bunches starting from A or B. As is clear from this construction, the point C is
the desired one.

6. Proof: by induction. If there is only one car, there is nothing to prove.
Suppose the statement is already proved for n− 1 cars and consider n cars. Clearly, at least one of the

cars (call it A) has enough gas to drive to the next car, B. Remove B from the road and add its petrol to A.
Now there are n − 1 cars on the road with the same quantity of gas and by the inductive hypothesis there
exists a car C which can run the whole length of the road. Notice that the same car C can run the whole
length of the road also in the initial situation when car B is present on the road.

7. For x = 3 there are no solutions, since the left hand side is equal to 122 which is not a perfect square.
Let us show that for x > 4 there are no solutions either. Observe that to find the minimal positive value

of z = R2 − t2 for a fixed R and variable integer t, one has to look at the graph of this function to deduce
that the minimum is attained at t = R− 1.

Let us now rewrite the equation in the form

(x2 + x)2 − y2 = 11(x− 1). (∗)
By the observation above, the left hand side of (∗) takes the least positive values for a fixed x if y = (x2+x)−1.
But then it is equal to 2x2 + 2x− 1 which is greater than 11(x− 1) for x > 4 as is easy to verify by setting
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t = x − 1. Therefore, if the left hand side of (∗) is positive, then it is greater than the right hand side.
Therefore, the solutions indicated above are the only ones.

8. First, let us prove that all numbers greater than 8100 are painted red. Indeed, let 8100 < A =
81k + 100l. By Euclid’s algorithm, any integer can be represented in this form with integer, though not
necessarily positive, k and l. At least one of the numbers k and l, say, k, is positive. From all representations
of A in the above form select the one for which k is the least positive. Then k < 100 (otherwise there would
have existed a representation (k − 100, l + 81)), therefore, 81k < 8100. But then 100l > 0 and l > 0, as was
required.

As is not difficult to figure out, the number 8100 is painted blue; hence, this is the right-most of the
blue points. On the other hand, it is clear that the left-most of the red points is 181. Therefore, it is clear
that the point whose existence is claimed in the problem should equal to 1

2 (8100 + 181) and numbers A and
B are symmetric with respect to it if A+B = 8281.

It remains to prove that of two such numbers one is necessarily red and another one blue. Let us write
again A = 81k + 100l and B = 81m+ 100n. Assume that k and m are the least positive numbers for which
such a representation exists, i.e., 0 < k,m < 100. Then

8281 = 81(k +m) + 100(l + n)

and 0 < k +m ≤ 200.
But it is not difficult to verify that there exists only two representations of 8281 in the form 81x+ 100y

so that 0 < x < 200. These representations are: x = 1, y = 82 and x = 101, y = 1.
In the first case k +m = x = 1 which contradicts the condition k,m > 0. Thus, the second case holds.

But then l + n = 1 and therefore, one of these numbers is positive and the other one is not. This directly
implies that one of the numbers A,B is red. We leave it to the reader to establish that the other number is
blue.

12. A) Draw all possible straight lines through all pairs of points in the set. Denote straight line l
containing points A and B by AB. We can now demonstrate that at least three points of the set lie on at
least one of the drawn lines.

Indeed, if A, B, C, and D are four points of the set which do not coincide, and M — the intersection
point of AB and CD — also belongs to the set, then A, B, C are either on the same straight line and then
M coincides with C (see Fig. 107 a)) or three points A, B, M and, respectively, C, D, M already lie on
straight lines AB and CD; see Fig. 107 b).

So let us choose a line l containing at least three points of the set and prove that all points of the set
but one lie on that line. Assume the contrary: let A and B lie outside l. Let us prove then that the set
contains an infinite number of points: contradiction.

To this end denote the intersection point of l with AB by C1. By the hypothesis it belongs to the set.
(In what follows we will remember that all intersection points of the lines under consideration belong to the
set.) Line l was said to have also points C2 and C3 of the set, see Fig. 107 c). Denote the intersection point
of AC3 with BC2 by X1 (AC3 and BC2 are not parallel), X1 not lying in l. Lines AC2 and C1X1 meet at
point X2, also outside l. Then BX2 intersects l at point C4 which does not coincide with either C1, C2, or
C3 (since BC4 does not coincide with either BC1 or BC3).

Further on, AC4 meets C1X1 at X3 and then BX3 meets l at point C5 distinct from C1, . . . , C4.
Let us continue the same operation: if Ck ∈ l is already plotted, lines ACk and C1X1 meet at a point

Xk−1 distinct from X1, . . . , Xk−2 and then BXk−1 intersects l at point Ck+1 distinct from C1, . . . , Ck. The
process may go on ad infinitum and an infinite number of points from the set will appear on l (and we did
not yet consider other intersection points of the lines!). Since the given set is a finite one, the contradiction
proves that our assumption was wrong.

Figure 107. (Sol. A12)
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B) Let us start solution with heading (c). We will give two solutions related to different branches of
geometry (see Remark below).

First solution. Draw plane π which does not pass through point O and is not parallel to either of
the straight lines l1, . . . , ln of the set (a “generic” plane). Denote n intersection points of these lines with π
by A1, . . . , An, respectively. Hereafter we will denote the plane containing the straight lines li and lj by lilj
and denote the line through points Ai and Aj by AiAj .

Now, we can prove that the set of points A1, . . . , An ∈ π satisfies the condition of Part A) of the solution.
Indeed, let AiAj and AkAp be two distinct straight lines. We can prove that they meet at one of the points
As of the set (generally, As may coincide with either of the points Ai, Aj , Ak, and Ap).

To this end consider planes lilj and lklp. These planes intersect because they contain point O. Denote
by l the straight line of their intersection. Let us prove that l is a straight line from our set. Indeed, denote
a line from the set perpendicular to li and lj (there is such a line by hypothesis) by L1 and a line from the
set perpendicular to lk and lp by L2. Then l is perpendicular to plane L1L2 because both L1 and L2 are
perpendicular to l.

On the other hand, by the hypothesis a straight line perpendicular to plane L1L2 must belong to the
set l1, . . . , ln. Thus, l is a straight line from the set, Q.E.D.

If l = ls, then point As which belongs to ls must also belong to line AiAj (since l belongs to lilj) and
to line AkAp (because l belongs to plane lklp). Thereby we have proved that lines AiAj and AkAp meet at
point As from the set.

But then it follows from heading A) that n − 1 points of the set lie on the same line (let them be
A1, . . . , An−1) and the remaining point An lies outside this line.

Consequently, the lines l1, . . . , ln−1 lie on the same plane P while ln is outside it. How then is ln arranged
relative to plane P?

We see that ln ⊥ P , since there is a line from the set perpendicular to the lines l1 and l2, and ln is the
only line from the set perpendicular to the plane l1l2.

Finally, taking ln and an arbitrary line li, li ⊂ P , we deduce from the hypothesis that among the
remaining lines of the set lying in plane P there exists a line lj perpendicular to both li and ln. Hence, for
each line L from the set, L ⊂ P , there exists a line M from the set such that M ⊂ P and M ⊥ L. Thus, all
lines l1, . . . , ln ⊂ P can be divided into pairs of pair-wise perpendicular lines. Hence, n− 1 is even; thus, n
is odd (n ≥ 3).

But for any odd n the desired arrangement of the lines exists and can be uniquely described as the union
of a line, l, with n− 1 lines lying in the plane perpendicular to l; moreover, the n− 1 lines consist of n− 1

2
pairs of mutually perpendicular lines.

Therefore, the answers to (a) and (b) are: 99 straight lines can be drawn in the way required and 100
lines can not.

Second solution. Let us prove that all straight lines save one lie on one plane. (The remaining part
of this solution does not differ from the first solution). For n = 3 the statement is clear. For n > 3 it is
impossible that all lines are pair-wise perpendicular. Take two non-perpendicular lines, x and y. Let their
common perpendicular be the z-axis. Two more lines should lie in xy-plane: the common perpendiculars to
the z-axis and the original lines.

Let us prove that all other lines lie in xy-plane. Assume the contrary and among all lines select the one,
l, forming the least angle with the z-axis. Of 4 lines lying on xy-plane, select one, m, not in plane zl and
not perpendicular to zl-plane. Since lines m and l are not perpendicular, a line p lying on ml-plane and
perpendicular to m also belongs to our set.

It remains to observe that line p is the image of the orthogonal projection of the z-axis to ml-plane;
hence, the angle between z and p is smaller than the angle between z and any other line lying in ml-plane.
In particular, it is smaller than the angle between z and l. Contradiction. Q.E.D.

Remark. Problems A) and B) are statements of the so-called “geometry of order” or “geometry of position” (another
name is “descriptive geometry”) where the main idea is that of a “position between” (e.g. a segment is a set of points lying
between two given points, etc.) and the idea of an “arrangement in a certain order”. The solution of A) and the first solution
of B) are in the spirit of this geometry. The second solution uses the notion of distance (angle) and is related to the metric
geometry.

13. To demonstrate that the total weight is equal to 800 g, let us prove that both straight lines pass
through the center of the square. If the lines do not meet at the center, let us translate them parallelly so
that they would. After this translation one of the pieces increases in weight and the opposite piece decreases
and all four pieces become equal figures. Contradiction.
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14. This problem generalizes Problem 30.2.7.5. We will describe a generalization of the three-dimensional
analogue of this problem (cf. Problem 30.2.10.4) at the end of the solution below.

First of all, we outline the idea of the solution. Let us randomly distribute the searchlights over given
points M1,M2, . . . ,Mn. If not the whole plane is illuminated we will construct another, “improved”, ar-
rangement of the searchlights, the “quality” of the arrangement being evaluated with a numerical function
f .

Since the number of the arrangements of searchlights over the points M1,M2, . . . ,Mn is finite, we will
automatically light up the entire plane by taking the arrangement for which the value of f is maximal. Indeed,
if not the whole plane were illuminated in this case we could still improve the arrangement: contradiction.

Figure 108. (Sol. A14)

Let us start carrying out this plan. Let us transport all searchlights to one point O and draw a convex
n-gon A1A2 . . . An whose sides are lighted up by the searchlights1, see Fig. 108; let ∠AiOAi+1 = αi, i =
1, . . . , n. Drop the perpendiculars OHi from O to the sides of the polygon or to their extensions. Let
|OHi| = hi. Consider the vectors

~ei =
1
h2

i

·OHi
−−→

for i = 1, . . . , n.

Clearly, |~ei| = 1
hi

, see Fig. 108 b).
Let us attach each vector ~ei to its respective searchlight αi. Then the arrangement of the searchlights

over the points M1, . . . ,Mn corresponds to the distribution of the vectors ~ei, . . . , ~en over these points (we
arrange the searchlights together with the vectors as solid bodies).

To justify the appearance of the strange vectors ~ei we need the following geometric fact:
Lemma 1. Suppose the searchlight αp placed at point M illuminates a point N while the searchlight

αq placed at M does not illuminate N . Then MN
−−→ · ~ep > MN

−−→ · ~eq, see Fig. 108 c).
(Hereafter a “·” means the inner product of vectors; the i-th searchlight is denoted by αi — the angle

it illuminates indexed by its number).
Proof. Let MN

−−→
= ~v. Draw the vector OP

−→
= ~v with O as its initial point, see Fig. 108 d).

The ray [OP ) intersects the p-th side of the polygon A1 . . . An at a point K and does not intersect the
q-th side because the searchlight αp lights up N while αq does not.

There are two possibilities:
1) [OP ) does not intersect the straight line on which the q-th side lies;
2) [OP ) intersects this line at a point R.
In case 1), Lemma 1 is obvious since ~v · ~ep > 0 and ~v · ~eq ≤ 0.
In case 2), the inequality |OK| < |OR| is satisfied and, therefore,

~v · ~ep = |OP−→| |~ep| cos(~v,~ep) = |OP−→| 1
|OH−→p|

cos(OH
−→

p, OK
−→

)

= |OP
−→|
|OK−→| >

|OP−→|
|OR−→| = |OP−→| 1

|OH−→q|
cos(OH
−→

qp, OK
−→

) = |OP−→| |~ep| cos(~v,~eq) = cos(~v,~eq).

Now, let us introduce a function fσ(N) that depends on the point N of the plane and on the distribution
σ of searchlights over the points M1, . . . ,Mn:

fσ(N) = M1N
−−→ · ~eσ(1) +M2N

−−→ · ~eσ(2) + . . .+MnN
−−−→ · ~eσ(n), (∗)

1If we leave out the 3-dimensional generalization for better days, the following solution can be considerably simplified by
assuming that all OAi are of unit length.
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where σ(i) is the number of the searchlight placed at point Mi.
Lemma 2. If point N is not lighted up under the arrangement σ of the searchlights, there is an

arrangement τ of searchlights such that fτ (N) > fσ(N).
Proof. First, we give an algorithm to improve the arrangement σ.
Algorithm. Let all searchlights αi first stand at points Mi with the same index. Let α1 not light up N .

Remove it for a while and place at point M1 the searchlight which does illuminate N . (Explain yourselves
why such a searchlight will certainly be found.)

Let it be α2. Now, there is nothing at point M2, where α2 used to be. Out of the remaining searchlights,
place at M2 the one which will light N . Let it be α3. Then we place the searchlight α4 at M3 to light N ,
the searchlight α5 at M4, and so on, until we have a cycle, see Fig. 109 e).

Figure 109. (Sol. A14)

This means that the searchlight αk+1 is moved over to Mk, the searchlight αk+2 is moved to Mk+1, etc.,
and αk to Ms, where s > k. Bring back all searchlights α1, . . . , αk−1 which did not get into the cycle to
their initial points M1,M2, . . . ,Mk−1.

The result of the application of the algorithm is that N is lighted up by each searchlight αk, αk+1, . . . αs,
where s ≥ k + 1, because N was not lighted up before.

Let us see how f(N) changed under the application of the algorithm. The summands with the index
of Mi not equal to k, k + 1, . . . , s in the sum (∗) did not change, whereas, as follows from Lemma 1, the
summands with the indices k, k + 1, . . . , s increased. Q.E.D.

However, fσ cannot be directly used yet to evaluate the “quality” of the arrangement σ since it depends
on N . The situation is saved by the wonderful

Lemma 3. For any two points N1 and N2, the difference fσ(N1) − fσ(N2) does not depend on the
arrangement of searchlights.

Proof. Observe that the sum
n∑

i=1

eσ(i)
−−→ does not depend on the choice of an arrangement; therefore,

fσ(N1)− fσ(N2) =
n∑

i=1

Mσ(i)N1
−−−−−→ · eσ(i)

−−→−
n∑

i=1

Mσ(i)N2
−−−−−→ · eσ(i)

−−→

=
n∑

i=1

(
Mσ(i)N1
−−−−−→−Mσ(i)N2

−−−−−→)
· eσ(i)
−−→ =

n∑
i=1

N2N1
−−−→ · eσ(i)

−−→ = N2N1
−−−→ ·

n∑
i=1

eσ(i)
−−→ = const. Q.E.D.

Let us prove that the function

fσ = fσ(N) +NN
−→

0 ·
n∑

i=1

eσ(i)
−−→ =

n∑

i=1

Mσ(i)N0
−−−−−→ · eσ(i)

−−→,

where N0 is an arbitrary fixed point in the plane, is the desired one.
Indeed, the value of fσ does not depend on N and increases under any rearrangement described in the

algorithm.
Thus, we have found the “quality function”, fσ, which only depends on the arrangement σ of the

searchlights and demonstrated how to increase its value if a point in the plane is not lighted up. Since fω

as the function of its index, the arrangement (for a fixed arrangement it is a constant as we just proved),
attains its maximum for an arrangement ω, the entire plane is lighted up in this case.

Extension. (Three-dimensional generalization). Let there be given a convex polyhedron with
faces Γ1, . . . ,Γn and a point O inside, as well as n arbitrary points M1, . . . ,Mn in space. Each face Γi
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defines a polyhedral angle αi at which this face is seen from O, see Fig. 109 f). There are n searchlights at
O, the i-th searchlight lighting up the polyhedral angle αi (1 < i < n); thus the entire space is lighted up
from O.

Prove that the searchlights can be moved over to points M1, . . . ,Mn so that the whole space will be
still lighted up. The solution of the problem almost literally repeats that of the flat version.

15. Denote: ∠ABD = α, then ∠ACD = α
2 , ∠ADB = 90◦ − α

2 , see Fig. 110.

Figure 110. (Sol. A15)

From 4ABD we have
∠BAD = 180◦ − (α+ 90◦ − α

2 ) = 90◦ − α
2 ,

that is ∠BAD = ∠BDA and so 4ABD is an isosceles triangle: AB = BD = r.
Draw a circle centered at B with radius r. Since ∠ACD = α

2 , point C lies on the circle (analyze this
situation on your own). Consequently, BC = r. We have AB = BC = AC, i.e., 4ABC is equilateral;
∠ABC = 60◦ and ∠BDC = ∠BCD = 60◦ + α

2 . Hence, ∠ADC = (90◦ − α
2 ) + (60◦ + α

2 ) = 150◦.

16. A) Draw three mutually perpendicular planes through the center of the cube. They divide the cube
into 8 smaller cubes with edge 1

2 . Since there are 9 points, two of the points can be found in at least one of
the 8 cubes. The distance between the points does not exceed the length of the diagonal of a smaller cube,

i.e., it does not exceed
√

3
2 . Therefore, the two points are the desired ones.

B) Consider two subcases:
a) Draw three mutually perpendicular planes through the center of the cube. They divide the cube into

8 smaller cubes of edge 1. If some two of the 8 points are in one small cube, we are in the situation solved
in A) and everything is proved.

Therefore, assume that each cube has exactly one of the 8 points. Suppose now that the distance between
any two of the points is greater than 1.

Denote the distances from each of the points to the vertex of the small cube nearest to this point by
d1 ≥ d2 ≥ . . . ≥ d8. Choose a smaller cube such that its point A corresponds to the distance d1. We can
assume without loss of generality that A is within the black triangle of the upper face in the right-hand cube
nearest to us, see Fig. 111 a).

Consider its neighboring non-black cube on Fig. 111 a) and let the point B on this cube correspond to
the distance to the vertex V , which is equal to di.

Draw the ball of radius di centered at V and its intersections with the faces of this cube. We will produce
three quarter-circles of radius di on the faces. It is on one of them that the point B lies. But then it is
easy to prove (there are many ways of doing this, see below) that the distance from A to any point of an
arbitrary quarter-circle centered at V does not exceed 1.

Here is one of such proofs. The most difficult case is the one when B is on the rear face (invisible to us) of the neighboring
cube. (Analyze the two other cases on your own.)

We introduce coordinate axes at the upper face of the front cube (the one that contains point A) and at the rear face of
the neighboring cube (the one that contains point B) as shown in Fig. 111 a). The coordinates (z, t) of A satisfy the condition

1

2
≥ z ≥ t (1)

and the coordinates (x, y) of B satisfy the condition

x2 + y2 ≤ z2 + t2. (2)
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The squared distance between A and B is

|AB|2 = (1− z)2 + x2 + (t− y)2,

which follows from triangles 4AMB and 4MBH, since AM ⊥ MH and BH ⊥ MH. After simplification and taking (2) into
account we get:

|AB|2 = 1− 2z + (z2 + t2) + (x2 + y2)− 2yt ≤ 1− 2z + 2(z2 + t2)− 2yt.

Since z2 + t2 ≤ 2z2 ≤ z ≤ z + yt (we have made use of (1)), we have:

−2z + 2(z2 + t2)− 2yt ≤ 2(z2 + t2 − (z + yt)) ≤ 0

and, therefore, |AB|2 < 1.
This contradiction proves the statement of the problem.

b) Let us place the cube on its vertex V so that one of its great diagonals is perpendicular to the
horizontal plane. Put a point in each of the other vertices and number them 1 to 7, as shown in Fig. 111 b).

Figure 111. (Sol. A16)

Move points 1, 2, 3 over a short distance ε along the edges 1V , 2V and 3V ; we get points 1′, 2′, 3′. Then
choose a number δ many times smaller than ε, e.g. 100 times smaller, and move points 4, 5, 6 to V over the
distance δ along the diagonals of the squares shown in Fig. 111 a) and denote the new points by 4′, 5′, 6′.
Point 7 will not be moved.

It is easy to check that the distance between any two of 7 “hatched” (see Prerequisites on Dirichlet’s
principle) points is strictly greater than 1 (verify it yourself).

17. a) If the planes are parallel, the statement of the problem is obvious and so it suffices to consider
the case when they are not parallel. Project the solid body under consideration to the intersection line l of
the given planes. We get segment AB.

On the other hand, the projection of the body to l can be obtained by projecting the body first to any
of the given planes and then by projecting the projection thus obtained to l. The result is that both circles
— projections of the body to our planes — are projected onto the segment AB whose length coincides,
therefore, with the length of the diameter of each circle. Hence, the circles are identical.

Remark. The body is not necessarily a ball: it can be of a complex shape, e.g. neither convex nor flat. This body lies in
the intersection of two identical infinite cylinders perpendicular to the planes.

b) Just as in a), we can prove that the projections of the vertices of each polygon on l, the intersection
line of the planes, are the same points A1, . . . , An. In addition, the centers of both regular n-gons are
projected into the same point O on l (to prove this use the theorem on three perpendiculars). Denote the
radii of the circles circumscribed around the regular n-gons by R and R′; it is obviously sufficient to prove
that R = R′. So let us find the sum OA2

1 + . . .+OA2
n:

n∑

k=1

OA2
k =

n−1∑

k=0

[
R cos

(
α+ 2πk

n

)]2

= R2
n−1∑

k=0

cos 2
(
α+ 2πk

n

)
+ 1

2
=
nR2

2
.
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Here we made use of the fact that
n−1∑

k=0

cos 2
(
α+ 2πk

n

)
= 0;

this equality follows from the fact that the sum of vectors drawn from the center of a regular polygon to its
vertices is zero.

In the same way,
n∑

k=1

OA2
k = nR′2

2 ; hence, R = R′ and the two n-gons are equal, Q.E.D.

19. Let us assume the contrary and let, for example,
√

2 = 1. . . .︸︷︷︸
k

77 . . . 7︸ ︷︷ ︸
5000001

. . . , k ≤ 4 999 998.

Then A = r
10k + 7

9× 10k , where r consists of the integer part and the first k digits of the decimal representation

of
√

2, approximates
√

2 with an accuracy to 10−k−5000001 and |a2−2| = (a+
√

2)|A−√2| ≤ 3·10−k−500001 <
10−k−5000000.

But on the other hand, |A2 − 2| is a rational number with denominator (9 · 10k)2; hence, |A2 − 2| ≥
1

(9 · 10k)2
> 10−2k−2. Therefore, −k − 5000000 < −2k − 2 or k > 4999998. Contradiction.

20. a) If n airplanes flew to the airfield O from the airfields A1, . . . , An, this means that in each triangle
4A1OAi+1 the sides OAi and OAi+1 are smaller than AiAi+1. Hence, ∠AiOAi+1 > 60◦ for any i =
1, . . . , n− 1.

But then the sum of these angles is greater than n × 60◦ and, on the other hand, it is 360◦, implying
n < 6, i.e., n ≤ 5.

b) For both the spherical and the flat triangles AiOAi+1 it is also true that the greater angle subtends
the longer side. Therefore the above reasoning can be applied literally to the case of the sphere. (The sum
of the angles of a spherical triangle is > 180◦.)

22. Obviously, cosα = ±4
5 . Let for example, cosα = 4

5 .

Set sin kα = ak

5k , cos kα = bk

5k . Then the trigonometric formulas for the sine and cosine of the sum yield

ak+1 = 4ak + 3bk, bk+1 = −3ak + 4bk.

This immediately implies that ak and bk are integer for all k. It remains to prove that they are not divisible
by 5. The easiest way to do this is to notice (and prove by induction) that ak ≡ 3k 6≡ 0 (mod 5) and
bk ≡ 3k−14 6≡ 0 (mod 5).

23. Note that if the three positions of the switch are labeled by 1, 2, 3 and the colors of the bulbs are
also labeled by 1, 2, 3 then the situation described in the problem coincides with that of Problem 30.2.10.5
(its solution is given in Part 2).

25. Multiply the equation by cos
(

3π
11

)
and express sin

(
kπ
11

)
· cos

(
3π
11

)
and cos2

(
3π
11

)
as a sum. We

get

sin
(

3π
11

)
+ 2 sin

(
5π
11

)
− 2 sin

(
π
11

)
=
√

11 cos
(

3π
11

)
.

Squaring this equation and replacing again all products in terms of sums, and the squares in terms of
the doubled angles we get after simplification

1 + 2 cos
(

2π
11

)
+ 2 cos

(
4π
11

)
+ 2 cos

(
6π
11

)
+ 2 cos

(
8π
11

)
+ 2 cos

(
10π
11

)
= 0.

which is obviously equivalent to the initial equation.
The latter identity can be also obtained geometrically. Namely, put the center of the right 11-gon in the

origin, align the 11-gon symmetrically with respect to the x-axis and consider the projections of all vectors
from the origin into the vertices to the x-axis, see Fig. 112.

The sum of the projections is clearly equal to the left hand side of the above equation. But since the
sum of these vectors is obviously equal to ~0, so is the sum of their projections, as required.

26. Let us rewrite the given equation in the form

520(x− 1)(yzt+ y + z) + 520(zt+ 1) = 57(yzt+ y + z)

Now, it is clear that if x > 1, then the left hand side is greater than the right hand side and there are no
solutions.
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Figure 112. (Sol. A25)

Thus, x = 1, and the equation takes the form

57(yzt+ y + z) = 520(zt+ 1)

or
57z = (520− 57y)(zt+ 1).

Since 0 < z < zt+ 1, we should have 57 > 520− 57y > 0 which is only possible for y = 9. Substituting
y = 9 we get 57z = 7(zt+ 1).

Applying similar trick for the third time we finally get xyzt = 1978. (The problem was suggested in
1978.)

Another solution. If you can notice that the equation can be rewritten in the form:

x+
1

y + 1
z + 1

t

= 1 +
1

9 + 1
7 + 1

8
you immediately get

x = 1, y = 9, z = 7, t = 8.

Indeed, if two numbers, e.g. continued fractions, are equal, then their integer and fractional parts are equal,
too. This implies the uniqueness of expression of a number as a finite continued fraction.

29. A) The areas of triangles OAH, OAB and OBM cannot be equal. Indeed, if we assume the
opposite and the areas of the triangles OAH, OAB and OBM are equal, see Fig. 113 a), then the fact that
SOAB = SOBM implies that OA = OM (the heights of these triangles dropped from the common vertex B
to the bases coincide) and the fact that SOAB = SOAM implies that OB = OH. Thus, BH and BM are
divided in halves at O. Hence, ABMH is a parallelogram and so BM and AH are parallel. This contradicts
the fact that they meet at C.

Consequently, if some three areas of four considered are the same and are equal to S, then one of the
parts with this area is quadrilateral HOMC. The following cases are possible:

B) See Fig. 113 b). In this case the second solution (given below) is even simpler than arguments in case
C) and the answer is S = 1

6 .
C) Suppose that triangles AOB and BOM have the same areas S and the area of 4AOH is s = 1−3S.

Connect H and M with a segment, see Fig. 113 b).
Let BC = a, BM = x, AC = b, CH = y. The ratio BM

MC is equal to the ratio of the areas of the

triangles with the bases BM and MC and a common vertex A, i.e., x
a− x = 2S

S + s .

Similarly, having considered 4ABH and 4CBH we get y
b− y = 2S

S + s . Consequently, x
a− x = y

b− y ,
whence

x(b− y) = y(a− x)⇐⇒ bx = ay ⇐⇒ y =
xb

a
.

Denote: |AB| = c. From 4ABM we have

S = 1
2 · SABM = 1

2 · 12 · xc sinB = 1
4bx sinC

because c sinB = b sinC by the law of sines.
To define the areas of all four parts into which 4ABC is divided, we can calculate s by two methods.
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On the one hand, s is the area of 4AHO:

s = 1− 3S = 1− 3
2S4ABM = 1

2ab sinC − 3
4bx sinC = 1

2b
(
a− 3

2x
)

sinC. (1)

On the other hand, S − s is the area of 4HMC, i.e., it is equal to 1
2y(a − x) sinC, whence s =

S − 1
2y(a− x) sinC. By substituting S = 1

4bx sinC and y = b
ax into (1) we get

s = 1
4bx sinC − 1

2
b
ax(a− x) sinC = 1

2bx
(

1
2 − 1

a (a− x)
)

sinC. (2)

We equate the right-hand sides of (1) and (2):

1
2b

(
a− 3

2

)
sinC = 1

2bx
(

1
2 − 1

a (a− x)
)

sinC ⇐⇒
(
a− 3

2

)
= x

(
x
a − 1

2

)

therefrom we get the following quadratic equation for x:

x2 + ax− a2 = 0.

Hence,

x = a

√
5− 1
2

= τa, y =
xb

a
= b

√
5− 1
2

= τb,

where τ =
√

5− 1
2 . It remains to calculate S and s:

S = 1
4bx sinC = 1

2ab sinC
√

5− 1
4 =

√
5− 1
4 = τ

2

(since 1
2ab sinC = 1 by the hypothesis);

s = 1− 3S = 1− 3
2τ = 7− 3

√
5

4 .

Figure 113. (Sol. A29)

Another solution. The same problem has a simpler solution if we use allow to use affine transforma-
tions of the plane — a composition of (a) a parallel translation and (b) a rotation in space with subsequent
projection to original plane and (c) a homothety. Such a transformation does not change the ratio of areas
of any two figures. Let us make use of the affine transformation which turns the original triangle into an
equilateral one and solve the problem set for the triangle obtained.

Despite of the fact that the solution seems to satisfy only the particular case of an equilateral triangle,
it nevertheless is a solution for all triangles because of the affine nature of the problem.

The solution is based on the same reasoning as above but is much simpler. Indeed, case b) becomes
completely obvious and in case c)

x = y,
1
2
(a− x)

√
3

2
= S − s, s+ 3S =

a
√

3
4
,

1
2

√
3

2
a = 2S
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(a is the length of the side of the regular triangle) therefrom it is easy to get the same quadratic equation
x2 + ax− a2 = 0 with the positive root x = τa.

The number τ =
√

5− 1
2 , the positive root of the equation x2 + x − 1 = 0, is a remarkable number in

Mathematics and even has a special name: the “golden section” or “Mister Tau.” It has many interesting
and beautiful properties, one of which is that its continued fraction expansion is one of the simplest possible:

τ =
1

1 + 1
1 + 1

1 + . . .

The golden section first appeared in geometry during the search for “golden” rectangles which remain
similar to themselves after squares are cut off from them. Let the longer side of a golden rectangle be 1 and
the shorter side be τ ; the “goldness” property is then τ

1 = 1− τ
τ equivalent to τ2 + τ − 1 = 0.

Mr. τ appears in many other geometric problems, e.g., in a problem on a regular pentagon. Let ABCDE
be a regular pentagon, see Fig. 113 d). Then its side is τ times smaller than the diagonal (AB = τBD) and
the diagonals divide each other in the ratio of τ : 1 (BT = τBD,DK = τAD). You can work out a proof
yourself or look up in [Cox].

But why did Mr. τ appear when we solved our problem of cutting a triangle? Could we anticipate it
and perceive Mr. τ directly without calculations?

Since, as was mentioned above, the problem is of affine nature, it suffices to replace from the very
beginning an arbitrary triangle with a special one for which everything is clear. We tried an equilateral
triangle as a most natural simple example but it proved to be only a trifle simpler than the original one and
we still had to calculate. So for this problem the obvious idea of simplicity does not fit. What we need is
the triangle ABD composed of the diagonals BD, AD and the side AB of the regular pentagon ABCD and
the intercepts AT and BK in it, see Fig. 113 d).

Indeed, S4AOB = S4BOT since AO = OT (the diagonal AT of parallelogram ABTE is divided in
halves by the other diagonal BE). In addition, S4BOT = SKOTD because 4BTO and KOTD are equally
composed, the former consisting of triangle BMH and rectangle MHTO and the latter of respectively equal
figures: triangle TRD and rectangle OTRK.

Finally, we get

S4AOB = S4BOT = SKOTD.

The diagonals of a regular pentagon have a remarkable property:

BT = τBD and KD = τAD;

hence,

S4AOB = S4BOT = SKOTD

should be true for the original triangle.
You may be interested to plot the straight lines AM and BH using a ruler and compass. For this it suffices to learn how

to plot lengths τ having a scale unit.
It can be done, for example, as follows, see Fig. 113 e). Construct square ABCD with side 1, find the midpoint K of AD

and then draw the circle centered at K with radius KC using your compass. Then the intersection point C′ of this circle with
an extension of AD is such that DC′ = τ . Indeed,

KC =

r
1

4
+ 1 =

√
5

2
= KC′, DC′ = KC′ −KD =

√
5

2
− 1

2
= τ.

Now to plot a segment of length τa from the segment a it suffices to perform the construction shown on Fig. 113 b) and
well-known from school textbooks.

Plotting the segments of lengths x = τa and y = τb, plot points M and H on AC and BC, see Fig. 113 b), so that
BM = x, CH = y and then draw the required line segments AM and BH. The construction is completed.

30. If the i-th digit of the number 2−√2 is equal to a, then the i-th digit of the number
√

2−1 is equal
to 9− a. If 41

3 < a < 42
3 , then 41

3 < 9− a < 42
3 . It remains to generalize this fact to arithmetic means.

31. Select two planets and draw the plane through them and the center of the Sun. Let this plane be
the equator of the Sun. Then from the northern and southern poles of the Sun not more than 7 planets can
be seen (the planets which belong to the equatorial plane are invisible) and from at least one of the poles
≤ 3 planets are seen. Therefore, the pole from which ≤ 3 planets are seen is the point desired.
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33. It is easy to see that even the squares of size 1
2 and 1

3 cannot be squeezed inside any square whose
side is less than 5

6 . In the square with side 5
6 all squares might be put, since their total area is equal to

π2

6 − 1 <
(

5
6

)2

. (We used the fact that
∑ 1

n2 = π2

6 ; for its proof see any good text-book on Calculus.) This

inequality certainly does not prove that they can actually be squeezed into a 5
6 × 5

6 square, one should guess
an ingenious way to arrange them; look at Fig. 114. The bubbles on Fig. indicate the sized of the squares
placed in the square indicated in the same way as the squares depicted on Fig. are placed in the given 5

6 × 5
6

squares.

Figure 114. (Sol. A33) Figure 115. (Sol. A34)

34. The construction required is carried out as follows. Fix two distinct points, A and B, not diametri-
cally opposite, on the surface of the ball. Draw two circles centered at A and B on the ball; let C and D be
the intersection points of the circles. (It is important here that A and B are not the endpoints of the same
diameter, because otherwise the circles drawn would have either merged or have an empty intersection.)

Then draw two more intersecting circles on the surface of the ball centered at C and D. Let M and N
be their intersection points. It is easy to see that all four points — A, M , N , B — lie on the same great
circle, see Fig. 115.

Remarks. 1) To draw the great circle on a sheet of paper, construct, for example, triangle 4AMB (or 4AMN , or
4ANB). This can be done by the standard method of transferring segments of size AM , AB and MB with the help of a
compass to the plane (of the paper). The circle circumscribed around 4AMB is the required one.

2) It is easy to draw this circle also on the ball itself, not just on the plane, if the legs of the compass can bend.

35. Let us numerate parts of both partitions 1 to 100: A1, . . . , A100 and B1, . . . , B100. Let Sij be the
area of Ai ∩Bj . Make an array of size 100× 100, where the (i, j)-th number is Sij . Since the parts Ai and
Bj of the partitions are of the same area, we have:

n∑

i=1

Sij =
n∑

j=1

Sij =
1

100
.

Define a “snake” to be a set of 100 numbers Sij in distinct rows and distinct columns. If all numbers Sij

constituting the “snake” are nonzero, the required 100 points should be placed in the respective intersections
Ai ∩Bj . Thus, it remains to prove the existence of a snake built of nonzero numbers; such a snake is briefly
called a nonzero snake.

Observe (it is quite obvious) that for any k rows selected there are k columns in whose intersection
points with the rows selected there are at least k nonzero numbers Sij .

Indeed, if the sets Ai1 , . . . , Aik
have a nonempty intersection with l elements Bj1 , . . . , Bjl

of the second
system, then Ai1 ∪ . . . ∪Ajk

⊂ Bj1 ∪ . . . ∪Bjl
. Hence, k ≤ l. Contradiction.

Let us prove the existence of a nonzero snake by induction on size of a minor1. Namely, let us prove
that for any k × k minor with a nonzero snake and an arbitrary (k + 1)-th row there exists the (k + 1)-st
column such that the (k + 1)× (k + 1) minor thus obtained also has a nonzero snake.

1A k × k minor is a set of k2 squares — the table formed by the points of intersection of k rows and k columns.
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The base of the induction: Take any nonzero element (a 1×1 minor) and add any nonzero element from
another row. Adding also two more elements which are in the same rows and columns we get a 2× 2 minor
with a nonzero snake.

The inductive step: Let the statement be true for all k × k minors. We can assume without loss of
generality that this minor is in the top left-hand corner of the array. Add another row. Without loss of
generality, let it be the (k + 1)-st row. We will prove that it is possible to select a column such that the
respective minor contains a nonzero snake.

By observation above, in one of the first k + 1 rows there exists a nonzero element Ail standing to the
right of the minor, i.e., i ≤ k+ 1, l > k. If Ail stands in the (k+ 1)-st row, let just augment the minor with
the l-th column and mark the element Ak+1,l in it. We get a “nonzero snake” of size (k + 1)× (k + 1), see
Fig. 116 a).

Figure 116. (Sol. A35)

If i ≤ k, then the i-th row contains a marked element, Aij with j ≤ k. Let us delete from the minor
the i-th row and the j-th column. We get a (k − 1) × (k − 1) minor with a marked nonzero snake. By the
inductive hypothesis it can be augmented with the (k + 1)-st row and a column to a k × k minor with a
nonzero snake. Let us augment the minor again with the i-th row and the j-th column (with the element
Aij 6= 0 marked); if the j-th column is already added, let us augment the minor with the l-th column and
mark Ail 6= 0. We get a (k + 1)× (k + 1) minor with a marked nonzero snake.

38. For example, one die is placed so that along its lateral sides stand 2, 3, 5, and 4, the other 39 dice
being placed so that along there lateral sides stand 1, 2, 6, and 5. Denote the number of 1’s, 2’s, 6’s, and
5’s over the 2 of the first die by x, y, z, t, respectively. Let us try to find a position for which the sums of
dots on the lateral sides were equal:

2 + 1 · x+ 2 · y + 6 · z + 5 · t = 3 + 2 · x+ 6 · y + 5 · z + 1 · t = 5 + 6 · x+ 5 · y + 1 · z + 2 · t.
The first and second equalities yield, respectively:

(x− z) + 4(y − t) + 1 = 0, 4(x− z)− (y − t) + 2 = 0,

therefrom we can determine x− z and y − t and see that they are not integer.
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40. Let

ak = k +
1

(k + 1) + . . .+ 1
n− 1

and bk = k +
1

(k + 1) + . . .+ 1
(n− 1) + 1

n

be the “tails” of the given continued fraction beginning with the integer k and hk = |ak − bk|. Then

ak−1 − bk−1 =
1
ak
− 1
bk

=
bk − ak

akbk
, k = 2, . . . , n− 1,

so hk−1 = hk
akbk

< hk

k2 (because ak > k and bk > k) and hn−1 = 1
n . Hence, the difference we are interested

in is estimated as follows:

h1 <
h2

22
<

h3

2232
< . . . <

hn−1

2232 . . . (n− 1)2
=

1
(n− 1)!n!

, Q.E.D.

41. Let points A, B, C move along the circles centered at O1, O2, O3 in the same direction at an angular
speed ω; let A(t), B(t), C(t) be their positions at the moment of time t. We assume that the plane under
consideration is a complex line and O is the origin. Then the centers of the circles are complex numbers c1,
c2, c3, the original points are numbers z1, z2, z3, and the points A(t), B(t), C(t) are numbers:

A(t) = c1 + (z1 − c1)eiωt; B(t) = c2 + (z2 − c2)eiωt; C(t) = c3 + (z3 − c3)eiωt.

The radii of the circles are |z1 − c1|, |z2 − c2| and |z3 − c3|, respectively.
The center of mass of 4A(t)B(t)C(t) is the complex number

Z(t) = 1
3(A(t) +B(t) + C(t)) = 1

3(c1 + c2 + c3) +
(

1
3(z1 + z2 + z3)− 1

3(c1 + c2 + c3)
)
eiωt.

Consequently, the center of mass of4A(t)B(t)C(t) is moving at an angular speed ω in the same direction
as the original points A, B, C over the circle centered at the point 1

3 (c1 + c2 + c3) and with radius 1
3 |(z1 +

z2 + z3)− (c1 + c2 + c3)|. The center of this circle is the center of mass of 4O1O2O3 and its radius R is the
length of the segment connecting the centers of mass of 4ABC and 4O1O2O3.

43. It is easy to see from Fig. 117 that β = ˘
AnB
2 , γ = ˘

BmA
2 , therefrom β+γ = 1

2 (
˘
AnB+

˘
BmA) =

360◦
2 = 180◦, γ = 180◦ − β. Hence, sin γ = sinβ.

Figure 117. (Sol. A43)

By the law of sines, for 4AMC we have

CA

sinα
=
CM

sinβ
=⇒ CA

CM
=

sinα
sinβ

and for 4BMD
DB

sinα
=
DM

sin γ
=⇒ DB

DM
=

sinα
sin γ

=
sinα
sinβ

.

Hence, CACM = DB
DM , Q.E.D.



SOLUTIONS TO SELECTED PROBLEMS OF MOSCOW MATHEMATICAL CIRCLES 173

44. Obviously, we can assume that not all given numbers are divisible by p. On the other hand, among
the given numbers there are two, a and b, that yield the same remainder when divided by p, i.e., a− b = lp.

Suppose that a and b are not divisible by p. Clearly, d = (a, b), their GCD, is also the GCD of a and
a− b. Then a

d >
a− b

d = p l
d ≥ p, as required.

Analyze on your own the case when a and b are divisible by p.

45. Denote the function
k∑

n=1
an cosnx by P (x). We see that P (x) ≥ −1 for all x under the condition of

the problem.

Let us prove that
k∑

l=0

P ( 2πl
k + 1 ) = 0. For this it suffices to prove that

k∑
l=0

a1 cos
(

2πl
k + 1

)
= 0,

k∑
l=0

a2 cos 2
(

2πl
k + 1

)
= 0,

. . . . . . . . . . . . . . . . . . .
k∑

l=0

ak cos k
(

2πl
k + 1

)
= 0.

But each of these sums is the sum of the real parts of complex numbers lying at the vertices of a regular
polygon, i.e., it is actually equal to 0 and the required equality is proved.

It follows, therefore, that

P (0) = −
k∑

l=1

P
(

2πl
k + 1

)

and since P
(

2πl
k + 1

)
≥ −1 for all l = 1, . . . , k, we have

P (0) ≤ −
k∑

l=1

(−1) = k.

46. Clearly, the first prompt of Guesser is arbitrary. It divides 16 possible numbers into groups 1 + 4 +
6 + 4 + 1 (if the prompt is: “11 111”, then the i-th group has numbers with i-many 1’s).

If we are unlucky as Guesser and got in the middle group we will be unable to guess.
Indeed, at the second prompt only the number of 1’s is important, not their order; 10 001 divides 6

numbers into groups 3 + 3 and 10 011 divides 6 numbers into groups 1 + 4 + 1. Therefore, it is clear that the
third prompt can not divide a group of 4 (since no prompt divides into four groups; if we do not prompt a
number of type 10 011, we will be even unable to divide the group of 3).

Remark. One can interpret the problem differently: since there stands a “five-digit number” in the
formulation, we may think that it is assumed that the first number is necessarily a 1.

49. The simplest way to solve this problem is to regard the white plane as a complex line, and consider
the locations of the man and the cat as complex numbers zm = zm(t) and zc = zc(t), respectively, that
depend on time t (t is a real number). Assume that the cat is at point O at the moment t = 0.

The cat encircles the man in three stages.
Stage 1. Denote: w = zc

zm
(observe that zm 6= 0: the man will not go to the origin because the cat

already was there). At the first stage, the cat runs along a straight line until the absolute value of w becomes
|w| = 1 + ε

2 , where ε = λ− 1 > 0.
Stage 2. The cat moves in a special manner: so that |w| = 1 + ε

2 at all times. At the beginning of the
second stage, arg zc = 0, 0 < arg zm < 2π, argw = − arg zm < 0; all the angles (arg’s) depend continuously
on t. If the cat wanted to make w = const, it would suffice for it to move at a speed of 1 + ε

2 . Therefore,
it has an excess of speed ε

2 which it can use to change the argument of w. The cat runs over a distance
not greater than t(1 + ε) over the time interval t, so |zc| ≤ t(1 + ε) and the cat can ensure that the rate of
variation of argw is at least

ε
2
|z| ≥

ε
2

t(1 + ε)



174 SOLUTIONS

Since
∞∫
c

dt
t = ∞, the variation of argw can be infinitely large. At stage 2, therefore, the cat increases

argw at the maximum possible rate. The second stage terminates when argw becomes positive.
Stage 3. Finally, the cat moves so that |zc| does not increase, |w| ≤ 1 + ε

2 and arg zc increases at a rate
limited from below by a constant. But the man cannot run away and the path of the cat closes after a finite
time.

50. Consider one of the given points and all annuli in which it is contained. The centers of these
annuli constitute an annulus with the inner radius 2 and the outer one 3. The area of this annulus equals
9π − 4π = 5π.

Let us construct 650 of such annuli for each given point; all of them are contained in the disc of
radius 19. Suppose that the statement of the problem is false. Then no point of the plane is contained
simultaneously in 10 of the annuli constructed. Therefore, the area of the union of the annuli is greater than
650 · 5 · π

9 = π · 361.11...
But this is greater than the area of the disc of radius 19 in which, as we have already shown, all of the

annuli are contained. Contradiction.
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51. Let us prove by induction that for any number x and an integer n there exists ε > 0 such that no
number from the segment ]x− ε, x[ can be represented as the sum of n numbers, each inverse to a positive
integer.

The base of induction, n = 0 is obvious: take ε = x. The inductive step: Let the statement be true for
an n; let us prove that it holds for n+ 1.

For every integer q ≤ 2n + 1
x there exists by the inductive hypothesis a number εq such that no number

from the segment ]x − εq − 1
q , x − 1

q [ can be represented as the sum 1
a1

+ · · · + 1
an

for positive integers ai,

i = 1, 2, ..., n. Hence, no number from the segment ]x− εq, x[ can be represented as 1
a1

+ · · ·+ 1
an

+ 1
q .

Let ε = min
1≤q≤2·n + 1

x

εq. Then no number from the segment ]x − ε, x[ can be represented as 1
a1

+ · · · +

1
an

+ 1
an+1

, where ai ≤ 2 · n + 1
x for i = 1, 2, ..., n+ 1 (the ai’s can be permuted and renumbered).

If ai > 2 · n + 1
x for all i, then 1

a1
+ · · · + 1

an
+ 1

an+1
< 1

2x which for ε < 1
2x does not belong to the

segment either. Q.E.D.

53. Each edge of the cube has a point of the polyhedron because otherwise the projection of the poly-
hedron along this edge would not coincide with the face. Take one point of the polyhedron on each edge of
the cube and consider the new convex polyhedron with vertices at these points. Since the new polyhedron
is a part of the original one, it suffices to prove that its volume is not less than one-third of the volume of
the cube.

We can assume that the length of the edge of the cube is 1. The new polyhedron is produced by cutting
off tetrahedrons from trihedral angles at the vertices of the cube. Let us prove that the sum of the volumes
of two tetrahedrons corresponding to the vertices belonging to one edge of the cube does not exceed 1

6 . This
sum is 1

3S1h1 + 1
3S2h2, where h1 and h2 are heights dropped to the opposite faces of the cube from the

vertex of the polyhedron, which belongs to the given edge of the cube, and where S1 and S2 are areas of the
respective faces of the tetrahedron. It remains to observe that S1 ≤ 1

2 , S2 <
1
2 , and h1 + h2 = 1.

Four parallel edges of the cube set a partition of the cube’s vertices into 4 pairs. Therefore, the volume
of all cut-off tetrahedrons does not exceed 4

6 = 2
3 , i.e., the volume of the remaining part is ≥ 1

3 . This
estimate is a precise one: for cube ABCDA1B1C1D1 the equality is attained for tetrahedrons AB1CD1 and
A1BC1D.

Figure 118. (Sol. A54) Figure 119. (Sol. A55)

55. First, prove the following
Lemma: for an arbitrary triangle ABC and for arbitrary points B1 on side AC and C1 on AB the

area of 4CBM is greater than that of 4C1B1M , where M is the intersection point of BB1 and CC1, see
Fig. 119 a).

Now, observe that if ABCDE is the original pentagon and A1B1C1D1E1 is the smaller pentagon, then
the number s calculated for the smaller pentagon is equal to

SA1B1C1 + SB1C1D1 + SC1D1E1 + SD1E1A1 − SA1B1C1D1E1 .

(The same is true, of course, for the greater pentagon but we do not need this fact.) Thus, it is easy to
see that the difference S − s is equal to the sum of five differences: SAA1B − SA1B1E1 , etc. (see Fig. 119 b))
each of which is positive by Lemma. Q.E.D.
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57. To construct a counterexample, suppose that at the first step two units stand aside; hence, at the
second step the number between them will also be a 1. Let us depict this as

1 1
1

Further, suppose that at 3-rd step under the lowest 1 two 2’s will be obtained and, therefore, at 4-th step
we get

1 1
1

2 2
2

Such an arrangement can be obtained from the triangle

5 1 1 5
3 1 3

2 2
2

At the next step we can construct, e.g., the triangle

13 5 1 1 5 13
9 3 1 3 9

6 2 2 6
4 2 4

3 3
3

And so on. The method indicated makes it clear that it is always possible to obtain at the 2k-th step
the number k under the initial 1. On the other hand, if at some moment all the numbers become equal,
they remain equal to the same constant later, while our construction puts at the center the number k at the
2k-th step, i.e., the middle number grows monotonously. this is the counterexample desired.

Another description of the same solution. Let the numbers in the first row be given by the
formula an = 2n2 − 2n+ 1 for n ∈ Z; therefore, the first row is of the form

. . . 25 13 5 1 1 5 13 25 . . .

Make sure on your own that after the first step all the numbers remain integers and after the second one
each number accrues by 1. This easily implies that (a) the numbers will always remain positive integers, (b)
they will never become equal.

59. Note that the total number of distinct spheres is finite: there are finitely many given points and,
therefore, there are finitely many various centers of mass of distinct subsets of our points. Therefore, we
immediately deduce that after a while we have a cycle of spheres. A sphere will eventually get another
number and then the spheres will start to be counted cyclicly.

It remains to prove that the length of this cycle is equal to 1.

Lemma. The function
n∑

i=1

|x − xi|2 in the k-dimensional space attains its minimum if and only if x is

the center of mass of points x1, ..., xn.

Proof. Indeed, let O be the center of mass of the points xi, i.e.
n∑

i=1

~xi = 0 (recall that the points are

of equal mass). Then

S =
n∑

i=1

|x− xi|2 =
n∑

i=1

k∑

j=1

(
x(j) − x(j)

i

)2

=
n∑

i=1

k∑

j=1

((
x(j)

)2

+
(
x

(j)
i

)2

− 2x(j)x
(j)
i

)
.

Since
n∑

i=1

~xi = 0, we deduce that
n∑

i=1

x
(j)
i = 0; hence,

k∑
j=1

n∑
i=1

x
(j)
i = 0 and S ≥

k∑
j=1

n∑
i=1

(
x

(j)
i

)2

, where the

equality occurs only in case x(1) = . . . = x(k) = 0, as required.
Now, consider the function

S(X) =
∑

i: |XAi|≤1

(
1− |XAi|2

)
,



SOLUTIONS TO SELECTED PROBLEMS OF MOSCOW MATHEMATICAL CIRCLES 177

where the summation runs over the points Ai from our set lying inside the unit sphere centered at X. Let
X ′ 6= X be the center of mass of these points. Let us show that S(X ′) > S(X).

Indeed, if under the shift of the center of the sphere from X to X ′ the content of points Ai does not
vary, the inequality follows from Lemma. Adding new points causes addition of new positive summands to
S(X ′), while the elimination of old points causes deletion of negative summands. Therefore, a change of the
content of points increases the value of S(X ′). Hence, the value of S(X) increases under each change of the
center of mass; this eliminates cycles of length > 1.

64. Extension. Moreover, they(who??) can not be placed so that the squares of distances between the
vertices were rational.

First, let us prove that a triangle with vertices at nodes of the square lattice can not be equilateral.
Assume the contrary; let there exist such a triangle and let a be the length of its side. Assume that the

grid of the lattice is integer; then a2 is an integer and the area of the triangle S =
√

3
4 a2 is an irrational

number. But the area of the triangle with vertices at nodes of the lattice is a multiple of 1
2 (see ....).

Contradiction, Q.E.D.
Let us return to the solution of the problem. Let such a position exists. By zooming the whole picture

the common denominator of all distances (or of all squares of distances if we are solving the extension of the
problem) times we make all distances into integers. Choose a coordinate system so that the coordinates of the
vertices of the square were (c, 0), (0, c), (−c, 0), (0,−c); let (x, y) be one of the vertices of the triangle. Since
the distances from (x, y) to both (c, 0) and (−c, 0) are integer, it follows that (x− c)2 + y2 and (x+ c)2 + y2

are integers; hence, so is their difference, 4cx. Similarly, 4cy is an integer. Therefore, all vertices of the
triangle should be situated at nodes of the square lattice with mesh of 1

4c . But we have already proved that
this is impossible. Contradiction.

65. The routes are designed as follows: we shall always turn right on the boundary of the town; while
inside the town we shall only do so at the marked turning points. Until no turning points are marked,
the tentative route is divided into 2n − 3 rings (for n ≥ 2); namely, one route around the town along the
penultimate roads, n−2 vertical and n−2 horizontal ovals, see Fig. 120 a). If 4 rings meet at an intersection,
we will unite the rings into one ring by marking the intersection point (with a “Turn Right” poster). In this
way, by marking the intersection with coordinates (2, 1) we will adjoin to the first ring two horizontal rings
and a vertical one. Next, marking the intersection with coordinates (3, 3) we will adjoin to the previous
route a horizontal ring and two vertical ones, etc.

This method works if n− 2 is divisible by 3. In other cases we have to select several turning points and
then proceed as above. The following turning points should be marked:

n = 3k + 2 ≥ 2 : (2, 1), (3, 3), (5, 4), (6, 6), . . . (n− 2, n− 2)
n = 3k + 1 ≥ 4 : (2, 1), (1, 2), (4, 3), (5, 5), (7, 6), . . . (n− 2, n− 2)
n = 3k ≥ 6 : (2, 1), (1, 2), (3, 2), (4, 4), (6, 5), (7, 7), . . . (n− 2, n− 2)

A singular case: n = 3. A case-by-case verification shows that in this case there exists no closed routes; but
it is not difficult to construct a route with the beginning point and endpoint on the opposite sides of one
road; see Fig. 120 b).

Figure 120. (Sol. A65) Figure 121. (Sol. A66)
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66. If the midpoints of the parallel sides in an octagon are connected with straight lines, these lines pass
through the center O of the circle. Introduce the following notations, see Fig. 121:

x = 1
2˘
A1A2, z = 1

2˘
A2A3, v = 1

2˘
A3A4,

y = 1
2˘
A5A6, t = 1

2˘
A6A7, w = 1

2˘
A7A8.

Since x+ z = t+ y and z + v = t+w (two pairs of vertical angles as shown on Fig. 121), it follows that
x− v = y − w and x+ w = y + v. Therefore,

t+ 2w + 2x+ z = t+ 2y + 2v + z,

i.e., line l connecting the midpoints of
˘
A2A3 and

˘
A6A7 cuts off the same sum of the arcs on the half-circles.

Since
˘
A1A8 and

˘
A4A5 supplement these sums to half-circles,

˘
A1A8 =

˘
A4A5 implying A1A8 = A4A5,

Q.E.D.

69. a) For example, take for such numbers all n-digit numbers of the form 11...11, where n is a power
of 3.

b) Let S(N) = 2n − 1 and let the number consisting of n last digits of N be divisible by 2n; then N is
also divisible by 2n. For example, N = 92112 is divisible by 16.

71. Let f(x) 6= 0. Then

f(x− 2y) + f(x) = 2f(x− y)g(y), f(x) + f(x+ 2y) = 2f(x+ y)g(y)

implying

f(x− 2y) + f(x+ 2y) = −2f(x) + 2g(y)(f(x− y) + f(x+ y)) = f(x)(−2 + 4g(y)2).

On the other hand,
f(x− 2y) + f(x+ 2y) = 2f(x)g(2y).

Dividing by f(x) we get g(2y) = −1 + 2g(y)2 > −1. Since 2y is an arbitrary number, we are done.
Remark. For example, the functions f(x) = sinx, g(y) = cos y possess the property. Accordingly, we

have cos y > −1.

73. First, suppose that all roots of the polynomial P can be divided into pairs of complex-conjugate
non-real numbers, zi and z̄i, as follows:

P (x) = [(x− z1) . . . (x− zn)][(x− z̄1) . . . (x− z̄n)] = P1(x)P2(x),

where P1(x) = (x− z1) . . . (x− zn); P2(x) = (x− z̄1) . . . (x− z̄n).
Then P2(x) = P1(x). Denote: P1(x) = Q(x) + iR(x), P2(x) = Q(x) − iR(x), where Q and R are

polynomials with real coefficients. We get

P (x) = P1(x)P2(x) = Q(x)2 +R(x)2.

Now, let us turn to the general case and remember that any real polynomial can be expressed in the
form

P (x) = a(x− x1)k1 . . . (x− xs)ks P̃ (x),

where a 6= 0 is the coefficient of the highest term, x1, . . . , xk all distinct real roots of P (x), P̃ (x) a polynomial
without real roots, i.e., P̃ (x) is the product of quadratic polynomials (x−z)(x− z̄) = x2+px+q. If P (x) ≥ 0
for some x ≥ 0 (e.g. for x > xj , 1 ≤ j ≤ s) then a > 0.

Then, a = b2, b > 0 and by the already proven P̃ (x) = Q̃(x)2 + R̃(x)2. Suppose all kj are even. Then
P (x) = b2Q2

1(x)P̃ (x) = (bQ1Q̃)(x)2 + (bQ1R̃)(x)2 and we are done. Now it suffices to prove that all kj are
indeed even.

It remains, moreover, to consider only one case: P (x) = (x − x1) . . . (x − xs) with distinct roots. To
conclude the proof show that P (x0) < 0 for a real x0.

74. Let x be not divisible by 3. Then x2 ≡ 1 (mod 3) implying 2y2 ≡ 1 (mod 3). But this means that
y2 ≡ 2 (mod 3) which is impossible. Therefore, x is divisible by 3, hence so is y. But then the left hand
side is divisible by 9 and dividing by 3 we see that 2t2 − z2 is divisible by 3. Hence, both t and z should
be divisible by 3 by the same reasons. Thus, any solution (x, y, z, t) has a common divisor 3. This easily
implies that the only solution is

x = y = z = t = 0.
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75. a) Denote the position of the airplane at the moment t by X(t) and let the whole time of the flight
be T sec. Then X(0) = Γ1, X(T ) = Γ2, where 0 ≤ t ≤ T , T > 1.

Denote:
α(t) = ∠X(t)AX(t+ 1), β(t) = ∠X(t)BX(t+ 1).

Since the path of the plane is continuous, so are the functions α(t) and β(t) defined for 0 ≤ t ≤ T − 1.
Let us draw a plane through Γ1Γ2 and X(1). From Fig. 122 a) we see that α(0) > β(0) because α(0) is

an exterior angle and β(0) is an interior angle of 4AX(1)B.
Similarly, by drawing the plane through Γ1Γ2 and X(T −1), we deduce from 4AX(1)B that α(T −1) <

β(T −1). Then the continuity of α(t) and β(t) implies the existence of a moment t0 such that α(t0) = β(t0),
Q.E.D.

b) Fig. 122 b) shows a half-circle of diameter Γ1B (the whole picture is two-dimensional); Γ2 lies on
the half-circle near B and A belongs to the diameter near Γ1. Then β = 1

2˘
XY and α > 1

2˘
XY , since

α = 1
2˘
XY +

˘
X ′Y ′, where X ′ and Y ′ are the intersection points of XA and Y A, respectively, with the

second part of the circle. Therefore, α(t) > β(t) for all t.

Figure 122. (Sol. A75)

76. Let us assume that the shades are closed, i.e., the boundary of a shade is a part of the shade. (If
the shades are open the same proof is applicable with slight modifications.)

Assume that the statement of the problem is false and quadrilateral ABCD with discs KA, KB , KC ,
KD is a counterexample. We may assume that the discs are in general position, i.e., are not tangent to each
other, no 3 of them intersect at one point and the pair-wise intersection points do not lie on the sides and
diagonals of the quadrilateral; otherwise — i.e., for a singular position — we can slightly enlarge the discs
without violating the nature of the counterexample.

Let us prove that the system of discs indicated should possess the following properties:
1◦. No three discs have a common point. Indeed, if, say, KA, KB and KC have a common point, they

cover 4ABC.
2◦. The points of pair-wise intersection of circles (the boundaries of discs KA, . . . , KD) cannot lie inside

ABCD. Indeed, if such a point would have existed, it would have been covered by one more disc (in order
to exclude the possibility of a lighted spot in its neighborhood). This contradicts property 1◦.

3◦. None of the discs can intersect two other discs. Indeed, if, say, KA intersects KB and KC , then
the lighted (after KD is deleted) part of 4ABC can not intersect segments AB and AC and can not have
vertices inside 4ABC (by property 2◦). It is not difficult to observe that this is impossible.

The discs with centers at the vertices of the quadrilateral possessing property 3◦ can not, however, cover
the whole quadrilateral. The contradiction obtained proves the statement of the problem.

77. On the line, introduce a coordinate system so that at the Beginning of Time, simply called initial
moment, one bacterium, call it F for first, were in the origin. It survives at the next moment only if there is
a bacterium in one of the points: (with coordinates) −1 or

√
2. These bacteria, in their turn, survive only

if at the initial moment there were bacteria at points −2, −1 +
√

2 or 2
√

2. And so on.
Consider all the bacteria that at the initial momets occupied points with coordinates −n + m

√
2 for

positive integer n, m. Since the total number of all bacteria is finite, there finitely many such chosen bacteria.
So there is one bacterium with the maximal m. If there are several such species, take the left-most of them,
corresponding to the greatest value of n; call it B.

It is clear now that there are no bacteria at points −(n+ 1) +m
√

2 and −n+ (m+ 1)
√

2 and bacterium
B is doomed to inevitable death.

Now it is not difficult to see that all the bacteria living at points with coordinates −k +m
√

2 for all k
will eventually die out, too.
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Now apply the inverse induction on m to see that in the end bacterium F will also perish. Since it was
chosen at random (we could have shifted the origin), the statement is proved.

78. Let a k-configuration C(k) be an arrangement of a finite number of points such that there exists at
least k points at distance 1 from any of the points.

Take a k-configuration and move it a a solid body by a vector of length 1 so that none of the points
thus moved coincide with any of the initial points of the configuration. The new set of points, the union of
the initial ones and the moved ones, clearly constitute a (k + 1)-configuration. The endpoints of a segment
of length 1 is a 1-configuration; a 1000-configuration contains 21000 points — the projections of the vertices
of a 1000-dimensional unit cube onto a two-dimensional plane.

Let us try to find a configuration of points with the number of points < 21000. Denote by A + B the
vector sum of A and B — the set of all pairwise sums of points from A and B (each point being identified
here with the endpoints of the vector equal to the sum of the two vectors corresponding to the summands).

Clearly, if A has m points and B has n points then A+B has no more than m · n points.
Let |C(k)| be the minimal possible number of points in a k-configuration C(k). Let us prove that

|C(m+ n)| ≤ |C(m)| · |C(n)|.
Consider any point ai + bj ∈ C(m)+C(n); using point ai we can find all the points ai1 , . . . , aim

∈ C(m)
at distance 1 from ai and using point bj we can find all points bj1 , . . . , bjn ∈ C(n) at distance 1 from bj .
(We have to have all points bj + aik

distinct from any of the points ai + bjl
.) Then the distance between any

of the points bj + ai1 , . . . , bj + aim
or any of the points ai + bj1 , . . . , ai + bjn

is equal to 1:

|(bj + ais
)− (bj + ait

)| = |ais
− ait

| = 1, |(ai + bjs
)− (ai + bjt

)| = |bjt
− bjs

| = 1.

But there is a total of |C(m)| · |C(n)| points in the set C(m) + C(n) (since there are that many pairs
(ai, bj)) and our statement is proved. Therefore, we have |C(2)| = 3 (a triangle) and:

|C(1000)| ≤ |C(2)| · |C(998)| ≤ |C(2)|2 · |C(996)|
≤ |C(2)|3 · |C(994)| ≤ . . . ≤ |C(2)|500 = 3500 < 21000.

Extension. For a 1000-configuration in space the same argument yields |C(3)| = 4 (a tetrahedron) and
|C(1000)| ≤ |C(3)| 9993 · |C(1)| = 4333 · 2.

79. The problem is equivalent to rolling a regular pentagon ABCDE over its sides. Let us prove that
prints of one point (not necessarily the vertex) eventually produce an everywhere dense set, i.e., in any disc
of any radius there will be a print.

First, we roll pentagon twice but so that its vertex A does not move. The point C will produce prints
C∗ and C∗∗. It is easy to see that C∗∗ is made by C after rotation of the vector AC

−→
through an angle of

2π − 23π
5 = 4π

5 .

Denote the rotation through the angle of φ about A by Rφ
A. In these notations R4π/5

A (C) = C∗∗. We
can demonstrate that the superposition (successive performance) of the rotations R4π/5

A and R−4π/5
B in any

order amounts to the parallel translation by a vector whose length may be taken to be equal to 1.
It is also easy to deduce that by rolling the pentagon one can produce both rotations through angles

kπ
5 , k ∈ Z, and parallel translations by vectors with the angles between them equal also to an integer multiple

of π
5 .
Let us consider four such translations by vectors e1−→, e2−→, e3−→, e4−→ with the angle between the neighboring

vectors being π
5 . We see that the vector f2

−→
= e1
−→+ e3

−→ is collinear with e2−→ and is of length 2 cos π
5 ; the vector

f3
−→

= e2
−→+ e4

−→ is collinear with e3
−→ and is of the same length. Since 2 cos π

5 is an irrational number, the set of

prints produced on the straight lines by f2
−→

and f3
−→

is everywhere dense on the plane, Q.E.D.
Remark. The required statement can also be proved with the help of the following lemma: the square

is the only regular polygon with all its vertices at the nodes of a square lattice.
80. Put all boxes into one large empty box. When we put n boxes into an empty box, the number of

empty boxes increases by n− 1 and the number of filled ones by 1.
So, if k+1 boxes are filled (k boxes by hypothesis and 1 box added at the beginning), then (k+1)(n−1)+1

boxes are empty. We have a total of (k + 1)(n − 1) + 1 + (k + 1) = (k + 1)n + 1 boxes and should remove
the large box that we added.

81. By the condition xx − xy = yx − yy. Hence,

(yx−y − 1)yy = xy(xx−y − 1),
xy

yy
=
yx−y − 1
xx−y − 1

. (∗)
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Let x > y > 1. We have: xy > yy and yx−y − 1 < xx−y − 1 and, therefore, xy

yy > 1 > yx−y − 1
xx−y − 1

.
Contradiction with (∗). Consequently, x = y.

82. With the help of the formula for the product of sines the formula to be proved takes the form
abc

6

√
2 cosα cosβ cos γ − cos2 α− cosβ − cos2 γ + 1.

Let us prove the latter formula. Let us take the coordinate system so that the vertex O of tetrahedron
OABC were at the origin, edge a along the Ox-axis, b on the plane Oxy; see Fig. 123.

Figure 123. (Sol. A82)

Then the coordinates of A and B are (a, 0, 0) and (b cos γ, b sin γ, 0), respectively, and coordinates (x, y, z)
of point C can be found from the equations

|~c|2 = x2 + y2 + z2 = c2; (~a,~c) = ax = ac cosβ; (~b,~c) = b cos γ · x+ b sin γ · y = bc cosα

implying

x = c cosβ; y
1

sin γ
(c cosα− c cosβ cos γ)

z =
√
c2 − x2 − y2 = c

√
1− cos2 sβ − 1

sin2 γ
(cos2 α− 2 cosα cosβ cos γ + cos2 β cos2 γ).

the volume of tetrahedron is equal to
1
6
ab sin γ · z =

1
6
abc

√
sin2 γ − cos2 β sin2 γ − cosα +2 cosα cosβ cos γ − cos2 β cos2 γ.

Now, it remains to replace sin2 γ with 1 − cos2 γ and − cos2 β sin2 γ − cos2 β cos2 γ with − cos2 β(sin2 γ +
cos2 γ) = − cos2 β.

83. a) Consider an arbitrary section of the body. It is a disc D0 centered at O. Draw line l through O
at a right angle to the plane of the disc. Then draw an arbitrary plane P through l. The section of the body
by P is a disc and so a segment of l intercepted by this section — denote it AB — is the diameter of this
disc. Indeed, let CD be the segment along which two mutually perpendicular sections intersect. Since AB
meets CD at point O, the midpoint of CD, and AB ⊥ CD, we are done.

Finally, drawing all possible sections of the body passing through l we see that all of them are discs with
diameter AB. And since all these sections fill the entire body, the latter is a ball with diameter AB, Q.E.D.

b) We do not know a solution elementary enough to fit in this book.1

1Well, actually, we do not know a non-elementary one either.
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84. 1◦. Each key should be in ≥ 6 copies (otherwise in the absence of ≤ 5 keyholders the strongbox is
impossible to open);

2◦. For any 6 people there is a key which only these persons possess (to unable the others to open the
strongbox); but this key, as any other one, is in ≥ 6 copies; hence, only these 6 persons are holders of this
key.

85. Let the angle between hands of the clock be equal to α. For the clock to show some minutes past
twelve the hour hand must form an angle of x with the ray passing from the center to 12 and so 0 < x < 360◦

12
and the minute hand must form an angle of x+ α on one side and 12x on the other side with the same ray.

From the equation 12x = x+ α we find: x = α
12 .

86. The following lemma can be directly verified.
Lemma. If a, b, c, d are positive and a

b <
c
d , then a

b <
a + c
b + d <

c
d .

Now, we have 0 < tanα1 < tanα2 < . . . < tanαn and so

tanα1 =
sinα1

sinα2
<

sinα1 + sinα2

cosα1 + cosα2
<

sinα2

cosα2
= tanα2 < tanα3 =

sinα3

cosα3

=⇒ sinα1 + sinα2

cosα1 + cosα2
<

sinα1 + sinα2 + sinα3

cosα1 + cosα2 + cosα3
< tanα3 < tanα4 =

sinα4

cosα4

=⇒ sinα1 + sinα2 + sinα3

cosα1 + cosα2 + cosα3
<

sinα1 + sinα2 + sinα3 + sinα4

cosα1 + cosα2 + cosα3 + cosα4
< tanα4 < tanα5, etc.

We get what we want by applying Lemma n times.

87. Let S = x + y + z. Subtract 1
x from this equation. We get −y + z

xS = y + z
yz . Hence, y + z = 0 or

xS = −yz.
If we assume the contrary to the desired, then y + z 6= 0 and, therefore, xS = −yz. Similarly, we have

yS = −xz, and zS = −yx. Dividing xS = −yz by yS = −xz we get x
y = y

x . In a similar way we get
x
z = z

x , and y
z = z

y . By the hypothesis, y 6= −z 6= x 6= −y, so we conclude that x = y = z and S = 3x,
xS = 3x2 = −x2. Hence, x = 0 = y = z. But the denominators are nonzero. Contradiction.

88. Observe that
1
2

+
1
3

+
1
6

= 1

and so:

1 = 1
2 + 1

2

(
1
2 + 1

3 + 1
6

)
= 1

2 + 1
2 · 2 + 1

2 · 3 + 1
2 · 6 for n = 4,

1 = 1
2 + 1

4 + 1
4 = 1

2 + 1
4 + 1

4

(
1
2 + 1

3 + 1
6

)
= 1

2 + 1
4 + 1

4 · 2 + 1
4 · 3 + 1

4 · 6 for n = 5

1 = 1
2 + 1

4 + 1
8 + 1

8 = 1
2 + 1

4 + 1
8 + 1

8 · 2 + 1
8 · 3 + 1

8 · 6 for n = 6

and so on.
Extension. Can all denominators be distinct odd numbers?
It turns out they can for all odd n ≥ 9. Try to prove this on your own. Start with two examples:

1 = 1
3 + 1

5 + 1
7 + 1

9 + 1
11 + 1

15 + 1
35 + 1

45 + 1
231 for n = 9

1 = 1
3 + 1

5 + . . .+ 1
231 =

1
3 + 1

5 + 1
7 + 1

9 + 1
11 + 1

15 + 1
35 + 1

45 + 1
5 · 77 + 1

9 · 77 + 1
45 · 77 for n = 11

Further on, at each step we replace the least of the fractions 1
3m (with m = 15 · 77 for n = 11) with the

sum 1
5m + 1

9m + 1
4m by increasing the number of summands by 2 each time.

89. Let us place the table on an uneven floor first so that the tips A and C of its opposite legs are on the
floor while the tips B and D are above the floor at the same distance from it (we will denote this distance
by h > 0, ABCD being a square). Now, press on the table so that A and C puncture the floor and stop at
a distance −h from it (i.e. at the distance h below the floor). Then B and D are on the floor.

We can obtain the same position of the table by rotating it about the center through 90◦, points A and
C being tangent to the floor at all times until they arrive at their final positions D and B, respectively. We
see that the distance h(t) from B and D to the floor (at time t) varies continuously in t from h to −h as t
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varies from 0◦ to 90◦, and A and C belonging to the floor at all times. So all four points A, B, C, D belong
to the floor for some t and at this moment h(t) = 0.

Extension. (We do not know a solution of these more general problems.) Consider the problem for a rectangle ABCD.
An even more general problem (suggested by S. Tabachnikov) is the one when ABCD is a quadrilateral inscribed into a circle
(the table must be inscribed so as not to shake, for example, on a spherical floor of a sufficiently large radius).

90. It is rather difficult to find x, y, z directly. Let us solve the system for a, b, c with x, y, z as parameters.
We have a linear system in a, b, c and, since x 6= 0, y 6= 0, z 6= 0, it has a solution (perhaps, non-unique if the
discriminant of the matrix, equal to 1− 1

x2 − 1
y2 − 1

z2 , vanishes). But a = xz, b = yz, c = xy is a solution of

the system (with or without the help of linear algebra). Therefore, the system is compatible and there are
no other solutions.

So xyz =
√
abc; hence, x =

√
ac
b , y =

√
bc
a , z =

√
ab
c .

94. Denote the lengths of the tetrahedron’s edges at the base by x, y, z and those of the edges coming
out of the vertex by a, b, c. Let a ≥ max(b, c).

If a < b+ c, then two triangles can be constructed from the edges a, b, c and x, y, z.
Let now a ≥ b+ c. Since a < x+ c and a < b+ z, it follows that 2a < x+ z + b+ c ≤ x+ z + a whence

a < x+ z and two triangles are constructed from the edges a, x, z and b, c, y.
Finally, take an edge of maximal length (a) and two adjacent edges (b, c) or (x, z); the triangle with

side a can be constructed in at least one of the cases; the remaining three edges now form a face of the
tetrahedron.

95. Solutions different from that hinted at in Hint can be obtained with the help of canonical equations
of the straight lines:

x− xi

ai
=
y − yi

bi
=
z − zi

ci
, i = 1, 2, 3.

96. It is easy to see that after the balloon is inflated each of the net’s strings (laces) can be seen from
the center of the balloon at the same angle as an edge of the standard 1× 1× 1 cube is seen from its center.

This angle is equal to the angle at the vertex of an isosceles triangle with base 1 and side
√

3
2 (half the

diagonal of the cube): α = 2arcsin 1√
3
.

Now, the radius R of the balloon can be found from the equation: 10 = Rα, see Fig. 124; hence,

R =
5

arcsin
(

1√
3

) .

Figure 124. (Sol. A96) Figure 125. (Sol. A97)

97. Consider a mapping f that converts the map1 K0 with a larger scale into the map map K1 with the
smaller scale: each point representing some spot in K0 (by considering only the part of the town depicted
on K0 we assume that K0 ⊃ K1) is placed upon the point representing the same spot in K1. Denote the
image of K1 under the same mapping by K2, see Fig. 125.

1The assumption that the map of Moscow is continuous was quite unjustified before the time of “glasnost” and probably
still is: large portions of Moscow were “classified”, i.e., restricted for “security reasons” and quite a number of scientists were
busy producing more or less plausibly distorted maps without “white spots”. But, kidding aside, this assumption is also dubious
mathematically if we take into account the fractal theory, see e.g., K. Falconer Fractal Geometry, Wiley, Chichester ea, 1990
and refs therein (esp. on p. xxii).
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Further, set Kn = f(Kn−1), n = 1, 2, . . . . The rectangles K0, K1, K2, . . . , Kn, . . . have just one common
point, x, since the sizes of the rectangles tend to zero.

The point x is precisely the point for pearcing. Indeed, it follows from x ∈ Kn−1 that f(x) ∈ Kn. Thus
the point f(x) also belongs to all rectangles but there is only one such point and so x = f(x).

Remark. In general, the following theorem is true:
Any continuous map of a rectangle onto itself has a fixed point.

So the statement of the problem remains true even if one map is crumpled before being placed on top of the
other map and pierced.

98. Since 22225555 ≡ 35555 ≡ (−4)5555 ≡ −45555 (mod 7) and 55552222 ≡ 42222 (mod 7), we have

22225555 + 55552222 ≡ 42222 − 45555 ≡ 42222(1− 43333)

≡ 42222(1− 641111) ≡ 42222(1− 11111) ≡ 0 (mod 7).

Therefore, 22225555 + 55552222 is a multiple of 7.
Another solution. Note that 43 = 64 ≡ 1 (mod 7). Hence

22225555 ≡ 35555 ≡ (−4)5555 ≡ (−4)5 ≡ (−4)2 ≡ −2 (mod 7).

Similarly,
55552222 ≡ 42222 ≡ 42 ≡ 2 (mod 7),

and we are done.

Figure 126. (Sol. A99)

99. A sketch of the required construction with nine threads is shown in Fig. 126.
A convenient way of making it is to take 3 pencils.
If all threads have the same length l and the rods the same length d, then, for the construction to be

rigid, it is necessary to have d = l

√
1 + 2√

3
.

The endpoints of the rods in our construction are vertices of two equilateral triangles arranged in parallel
planes which are perpendicular to the straight line connecting the centers of triangles and rotated through an
angle relative to one another. The rods themselves lie on straight lines which cross pairwise. The connection
of the rods and threads is the same as for an octahedron.

It is extremely difficult to prove the sufficiency of the above condition.
Remark. This connection was invented in the 1960s by an architect, B. Fuller. Many different designs of this type have

appeared since then.
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In this section we generously borrow from Introduction to [Le], [BY] and from [GT].
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Historical remarks

H.1. On this book. The book contains problems of all mathematical Olympiads held in Moscow since
the first one, in 1935. For the first time all of them are provided with solutions or at least hints and answers.

This book is not the first compendium of problems of Moscow Mathematical Olympiads. Selected
problems of Moscow Olympiads 1–15 were collected in [SCY]; those from Olympiads 1–27 were compiled
almost completely and published in Russian in [Le]. The compiler, A. A. Leman, and all who helped him,
did a tremendous job to put through that edition. Written with care and with easy to understand solutions,
the collection [Le] has become a rarity long ago. Both [SCY] and [Le], however, only contained solutions to
selected problems.

A critical review of these collections revealed a number of omissions and errors which we corrected as
best as we could1. We generously borrowed from Introduction of [Le] and from the book [GT], where most
of the problems from Olympiads 1–49 are supplied with at least an answer or a hint.

In this book, we offer the reader for the first time all (see footnote) problems of the first 27 Olympiads
and all problems of the Olympiads after the 49-th. (Problems from Olympiad 50 can be found in Chinese
[GT*]. The book was published in precopyright era without anybody’s consent2.) No complete (and correct)
solutions of ALL problems had ever been published yet. A new generation of high school students will be
able to get acquainted with a great number of interesting and beautiful ideas contained in more than 2 000
problems of the Moscow Mathematical Olympiads and learn the history of these happenings.

The problems for the Olympiads were put together and composed by many generations of graduate,
undergraduate and post graduate students (mainly) from the Moscow University. The preparatory problems,
those of the Olympiads themselves, and the problems told to school pupils at consultation sessions and
lectures constitute a very valuable material for study; a sort of the mathematical folklore.

Enthusiastic university students pester undergraduates and professors offering their problems, fiercely
criticizing others’ problems and demanding to create more and more of new problems to the pool. Sometimes
the discussions are very heated; sometimes a problem is discussed in whispers and the speakers look around
like conspirators. It means that they discuss a problem that has a chance to be accepted for the Olympiad.
More often than not a problem is so transformed during the discussion that the author can hardly recognize
his creation. Thus, the preparatory problems and those of the Olympiad are mainly the result of a collective
brain storm.

Unfortunately, this most valuable folklore is lost to a great extent and partly beyond recover. It is only
with great difficulties that we managed to restore some of the problems of Moscow Olympiads and sometimes
even complete original solutions that seemed to have been lost.

H.2. On necessity of Olympiads. In the mid-1930s many Soviet mathematicians pondered about
the need for cooperation with the high school to bring up the next mathematical generation. The training
of future mathematicians should begin in their childhood, the earlier the better. Nobody is surprised to see
a ballet dancer or a musician starting their career at the age of 8 or 6 or earlier. The explanation is that
it is impossible for a teenager to master all intricacies of the dancing art or of music, without specialized
training when a child, to develop the ear and the feeling of rhythm, the flexibility of knuckles or agility of

1Concerning completeness, this goal seem to be out of reach. Apart from Olympiads held during WW II, several problems
of one more Olympiad seem to have sunk in Lethe. As I. M. Yaglom writes in Problems, Problems, Problems. History and
Contemporaneity, Matematika v shkole (Mathematics in School), No. 5, 1989, pp. 143–148 : “ . . . I can not figure out why
neither Leman nor Galperin and Tolpygo addressed the participants of that Olympiad . . . for instance, me.

The 2-nd set of Olympiad 4 contained 5 problems, not 4. Of the problems of the 1-st set I remember the one which I found
the most difficult at that time. I hope that you will not find it difficult now, but bear in mind that it was the 1-st set:

In space (not on one plane) 4 points are given; how many planes equidistant from these points are there? I do not bet that
in the formulation of this 49-years old problem the parenthetical restriction was explicit. Perhaps, it was required to consider
separately the other case as well.”

Now Isaak Moiseevich Yaglom is dead. So nobody will, probably, provide us with the lacking problems.
2Which is a pity: the compilers would have supplied with corrections. For free.

177
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fingers, etc. And each year lost in childhood might only be compensated later with many years of incredibly
hard work.

It would be wrong to think that the situation is different in science, particularly in mathematics. Just
like in dancing or music, the years lost in childhood are difficult to compensate later on. The trouble is that
mathematics requires some agility of mind, the ability to think in abstract terms, and some logic culture
which are impossible to pick up even by hard work at the university. To be sure, all qualities making up
what is called “mathematical abilities” can develop at an ordinary school without any special training of a
teenager. This is a spontaneous process for born mathematicians which has taken place in all countries and
at all times. For example, S. Ramanujan (1887–1920), a very famous Indian mathematician had practically
no mathematical education.

The mathematical talent, however, like that of a musician, manifests itself quite early, as a rule. More-
over, when developed properly, a mathematician can make his most important discoveries when still quite
young. For example, Evariste Galois (1811–1832), a French mathematician, had time in his short life to
create an algebraic theory remarkable in its depth, which greatly advanced the development of mathematics.
Carl F. Gauss (1777–1855) published his classical studies of constructions with a ruler and compass when
19 years old; several years later he presented the book “Disquisitiones arithmeticae” which has few equals
in the history of mathematical science.

Participation of the mathematicians in school education is extremely essential. This was the case before
the Revolution; this work was reinitiated after the Revolution only in 30s; in Leningrad by CMA B. N. Deloné
and Prof. V. A. Tartakovsky , and in Moscow by CMA L. G. Shnirelman, and Prof. L. A. Lusternik (later
a CMA). The first mathematical Olympiad for schoolchildren in the USSR was held in Leningrad in the
spring of 1934.

H.3. On Moscow Mathematical Olympiads. In the spring of 1935, the Board of the Moscow
Mathematical Society, following the example of Leningrad, decided to organize the 1-st Moscow Mathematical
Olympiad. The organizing committee included all professors of mathematics from the Moscow University
and was headed by P. S. Alexandrov, the then President of the Moscow Mathematical Society. The purpose
of the Olympiad was to find the most talented students, to attract attention of the young people at large
to some of the most important problems and methods of modern mathematics, and to show the kids, least
partly, what Soviet mathematicians are working on, what progress they have made and what challenges they
have.

314 high school students participated in the Olympiad, 120 of them took part in Set 2 (the final). Three
students were awarded first prizes, five got second prizes and, in addition, 44 kids were given honorary prizes.
A place at the top of the Olympiad determined for many their future scientific career.

It is interesting how problems in Set 2 were selected. Three series of problems were offered and they
were designated A, B and C. A. N. Kolmogorov told us that it was done by his initiative in order to
enable students with different mathematical mentalities — geometrical, computational (algorithmic), or
combinatorially logical — to develop. (Details see in [Ko]). It is according to these types of thinking that
the series of problems were selected for the first Olympiad.

H.4. Mathematical circles. The success of the 1-st Moscow Mathematical Olympiads helped to
restructure the relations of the researchers with schoolchildren. This eventually brought about the School
Mathematical Circle attached to Moscow University. It was organized by L. A. Lusternik, L. G. Shnirelman
and I. M. Gelfand (a member of the US National Academy, the French Academy, and almost all other
Academies; at the dawn of perestrojka he was finally elected member of the USSR Academy of Sciences).
The Circle had two types of activities: lectures on all kinds of subjects and meetings of their members. The
lectures were attended first by dozens and then by hundreds of boys and girls from all over Moscow. Initially,
the lectures were addressed to 8-th to 10-th graders; later (since 1940) the lectures were delivered also for
7-th and 8-th graders. The lectures set forth in a popular form serious mathematical results, including the
latest scientific achievements.

The subjects of the lectures were quite diverse. Here are some examples of the lectures delivered at
different times of the circle’s existence:

L. S. Pontryagin. What is topology?
A. G. Kurosh. What is algebra?
N. A. Glagolev. Construction using only the ruler and without compass.
A. A. Lyapunov. Thinking machines.
A. I. Markushevich. Areas and logarithms.
L. G. Shnirelman. Multidimensional geometry.
B. N. Deloné. Derivation of the seven crystal systems.
A. N. Kolmogorov. The fundamental theorem of algebra.
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S. L. Sobolev. What is mathematical physics?
I. R. Shafarevich. Solutions of equations in radicals.
L. A. Lusternik. Convex figures.
P. S. Alexandrov. Transfinite numbers.
S. A. Yanovskaya. What does it mean to solve a problem?
Ya. S. Dubnov. Errors in geometric proofs.
I. A. Kibel. Mathematical methods of weather forecasting.
V. V. Golubev. Why does an airplane fly?
I. M. Gelfand. Dirichlet’s principle.
V. A. Efremovich. Non-Euclidean geometry.
B. V. Gnedenko. How science studies random phenomena.
N. K. Bari. Arithmetics of the infinite.
G. E. Shilov. About a derivative.
R. L. Dobrushin. Mathematical methods of linguistics.
V. G. Boltyansky. Continued fractions and the musical scale.
I. M. Yaglom. How can we measure information?
O. A. Oleinik. Helly’s theorem.

This list is far from complete, of course: many hundreds of lectures have been delivered for schoolchildren during the
circle’s existence.

We can say that the mathematical circle of Moscow University helped to revise considerably the term “elementary math-
ematics” (when it implies the body of mathematical knowledge that could be made fully understandable to school pupils).

Thus, for example, in his lecture “The fundamental theorem of algebra” made in 1937, Acad. A. N. Kolmogorov set forth
an essentially full proof of the theorem on the existence of a complex root in any algebraic equation. This proof (called in the
mathematical circle “The Lady with a lap dog” after a story by Chekhov) was published later in exactly the same form in the
book “What Is Mathematics?” by R. Courant and H. Robbins, [CR].

The same year, L. G. Shnirelman in his lecture “The group theory and its application to solving 3rd order equations”
brought up the group theory considerations, which actually go back to Galois, to obtain an explicit formula for a solution of
3rd order equations.

B. N. Deloné in his lecture “The geometry of continued fractions” delivered in 1947 not only proved a subtle theorem on
the best rational approximations of irrational numbers but also described an elegant results obtained by Hurvitz about the
irrationalities worst approximated by rational numbers.

Acad. S. I. Sobolev delivered in 1940 a lecture “What is mathematical physics?” and very skillfully brought the description
(at the level understandable to teenagers) up to the 2-nd order partial differential equations indicating qualitative differences
in the behavior of their solutions.

Sometimes the lectures were accompanied by problems to be solved at home or on the spot. I. M. Gelfand offered
particularly numerous problems to his audience. The boys and girls who knew well his manner of lecturing often preferred to
sit as far as possible from the speaker not to be called to the blackboard to solve a problem.

Ya. S. Dubnov’s lectures were interestingly arranged. Sometimes he delivered a series of two lectures, the first lecture
offering some problems whose solutions (partly found by the listeners) were discussed at the second one (in two weeks’ time).

While delivering a lecture on deduction arithmetics and Boolean algebra, A. N. Kolmogorov drew a plot of an electric
circuit shown in Fig. H1 to place two switches near the door and over a bed, each switch being able to turn on and off a lamp in
the room irrespective of the position of the other switch. At the end of the first hour he challenged the listeners to find during
the break the circuit which would enable one to switch the light on and off from n places in the room.

Figure 1. (Sol. AH1)

During preparations for the lectures, the lecturers often found new elegant proofs of well-known theorems, obtained new
generalizations of some facts that they knew earlier, and even made small mathematical discoveries. Unfortunately, most part
of this very valuable material is lost forever.

H.5. How to run mathematical circles (after Shklyarsky). Along with the lectures, there were
regular meetings of sections of the circle. They were conducted generally by senior and post graduate
students from “mekh-mat”, i.e., the Department of Mechanics1 and Mathematics of Moscow University

1A more adequate translation would be “Mechanical engineering” instead of the conventional “Mechanics”.
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(except two sections in 1936 and 1937: the section of geometric methods of the number theory was headed
by L. G. Shnirelman and the section of qualitative geometry was headed by A. N. Kolmogorov).

At first, the reports at the meetings were made by schoolchildren themselves; but soon it was found that
this form of work was non-productive. The trouble was that most of the reports were of little interest and
boring for all members of the circle (with an exception, perhaps, of the reporter himself). After all, it is not
enough to understand everything what is said in the mathematical text given by the section head to make
a good report.

A well-made report must arouse the interest of the audience and make the listeners think over and over
what they have heard; it should contain a clear presentation of the problems to be discussed, the main ideas
of the solution should be emphasized, the beautiful and original parts of proofs should be vividly depicted,
and so on. Besides, a lecture can rarely be good if the lecturer knows the subject only within the limits of
the lecture. Therefore, a teenager’s report is usually far inferior to that of an experienced teacher.

The radical change in the work of the sections was associated with the name of David Shklyarsky, a
talented mathematician and brilliant teacher, who headed the circles 1938 till 1941 while still a student.
(D. O. Shklyarsky was killed in a guerrilla combat in 1942 at the age of 23 during WW II.)

Reports of the school pupils at the meetings were practically abolished. Instead, the head of a section
delivered a short lecture that contained as a rule a complete description of a small mathematical theory.
Then, the members described their solutions of the problems given at the previous meeting. Problems of
varying complexities enabled Shklyarsky to involve virtually all section members into active work and by
repeating a member’s solution he had two objectives in mind: the audience understood better the solution
exposed by an expert while the author of the solution had a lesson: how to lucidly present a mathematical
proof.

This system has born a wonderful fruit: in 1938, at the 4-th Olympiad, members of Shklyarsky’s section
took away half of the prizes (12 out of 24), including all 4 first prizes! The results of the 4-th Olympiad
astonished the heads of the other sections and next year practically all of them followed this example. Since
then the form of the work of the circle found by D. O. Shklyarsky became predominant.

From the very beginning a tradition was established to issue annually a small collection of preparatory
problems for the next Olympiad, which was given to the circle members and to all who came to the Olympiad.

H.6. Examples of programs and syllabus of specialized sections of the circle.

The Geometric Probabilities series

The problem on a meeting: Two persons agreed to meet at a certain place, each has to come to the place between
10 and 11 o’clock and waits for the other one for exactly 15 minutes. What is the probability of the meeting? The basic
geometric idea is that the probability depends on the area or volume of the figure formed in the space of the events by points
corresponding to favorable events.

The problem of constructing a triangle given three segments. (All kinds of varieties of the basic problem: a stick
is randomly cut into three pieces; what is the probability that these pieces can form a triangle?)

The Buffon problem on throwing a needle for experimental determination of π. Throwing a closed convex curve on a
piece of paper ruled with parallel lines find the probability of the curve crossing a line.

Barbier’s theorem on the length of curves of constant width (as a corollary of the above or of Buffon’s theorem).
The “area” (measure) of a set of straight lines crossing a given arc.
Crofton ’s theorem and basic ideas of integral geometry.

Geometric Maximum and Minimum Problems
The rectification method as applied to problems on inscribed polygons of minimum perimeter. (The typical problem is to

find a point the sum of whose distances to the vertices of a triangle is minimal.)
An isoperimetric problem for n-gons (n = 3, 4 and the general case). Polygons of the greatest perimeter inscribed into

a circle; escribed polygons of the least perimeter.
An isoperimetric problem for arbitrary lines. Steiner’s four-hinge method and its critique. The problem whether there

exists a solution of the minimum or the maximum problem.
Blaschke’s theorem on the existence of a converging subsequence of convex figures. Substantiation of Steiner’s method.

Other examples of application of Blaschke’s theorem.
Variational methods including the search for maximal and minimal figures. (The typical problem is to draw a straight

line through a point inside an angle so as to cut off a triangle of the least area; solution of the problem using the method of
geometric differentiation.)

The section of algebra
(Subtitled ”Generalization of the notion of the number”)

Natural numbers (or, as they are more often called in science, positive integers) were the main building blocks for
further constructions. A quotation from L. Kronecker: “Natural numbers were created by God; the rest was done by humans.”
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The solvability of the equations x + a = b; subtraction. Generalization of the set of numbers in order to make
subtraction always possible. The integers as material for sufficiently meaningful constructions; the theory of numbers. Examples
of the number theory problems.

The solvability of the linear equations ax + b = 0; rational numbers. The number as a result of measurement; the
number axis. The possibility of using only rational numbers in problems concerning measurements of geometric and physical
values.

The solvability of quadratic equations. The insolvability of the quadratic equation x2 − 2 = 0. The solvability of
linear equations — the existence of points where the x-axis crosses the straight lines ax + b = y (with rational coefficients);
the absence (within the given stock of numbers) of the crossing point of the x-axis with the parabola y = x2 − 2. Quadratic
radicals. The solvability of all quadratic equations with real roots (the existence of the crossing points of the x-axis with the
parabolas y = ax2 + bx + c, where a, b, c are numbers from the given stock).

Construction of the point x =
√

2 (the diagonal of a unit square). Segments that can be constructed with a ruler and
compass. The proof of insolvability of the problem on duplication of a cube — the parabola y = x3 − 2 ”slips through the
known points of the x-axis”. Further generalization of our stock of numbers; the real radicals of any order.

The problem of solution of cubic equations. The proof of the fact that the cubic parabola y = x3 − 4x − 2 ”slips
through the points of the x-axis” (the irreducible case of a solution of a cubic equation.) The need to enlarge yet the stock of
numbers.

The problem on solution of cubic equations again. Complex numbers. Geometric interpretations of complex numbers
— the complex numbers as points in a plane; complex numbers as operators of rotational dilation. De Moivre’s formula and
problems on complex numbers.

The problem on solution of cubic equations once again. Cardano’s formula. Another extension of the set of (real) numbers
— combinations of complex radicals. The problem of solution of 4-th order equations.

The 5-th order equations. The proof that the parabola y = x5− 4x− 2 ”slips through the known points of the x-axis.”
The need for a new extension of the set of numbers. All kinds of roots of all kinds of algebraic equations.

Another approach to “numbers” — infinite decimal fractions. A new extension of the set of numbers proving
that the number

0.1100010000000000000000010000 . . . (=
X

n≥1

10−n!)

is not a root of any algebraic equation.
A different extension of the notion of numbers: quaternions as operators of rotational dilation in plane and in

space. The geometric theory of quaternions. The quaternions and vectors; operation of vector algebra in space; problems.
Frobenius’ theorem.

Another extension of the notion of numbers — complex numbers, dual numbers (Z[x]/(x2)) and double

numbers (Z[x]/(x2 − 1)). Geometric interpretation of dual numbers (as directed straight lines of a plane.) Geometric
applications of double numbers. The idea of Hurvitz’ theorem and of its generalizations.

(Of course, even in this extremely “theoretical” orientation of the circle, quite a few materials were left for exercises of the
members on their own.)

H.7. Books for mathematical circles. In 1950, “Gostekhizdat” (The State Technical Publishers)1

began publication of a special series of booklets under the heading “Popular Lectures on Mathematics”, most
of which were brought about as a specially prepared edition of lectures delivered at the mathematical circle
of Moscow University. Some of the lectures were also published in the collection “Mathematical Education”.
A brief summary of some unpublished lectures is given in Selected Lectures. An extensive bibliography is
given in [Le].

One of the main virtures of these books was, undoubtedly, their low cost.

H.8. How Moscow Mathematical Olympiads were arranged. The procedure has not practically changed since the
1-st Olympiad held in 1935.

The first 36 Olympiads (1935 through 1973) were held in two sets on Sundays at the end of March and early April (because
of the kids’ vacations).

Set 1 was selective, every participant being given 4 to 6 relatively easy problems (but with a catch!) and informed that it
would be enough to solve two of the problems to get through to set 2.

A week after the first set, the problems were reviewed, different solutions and typical errors were pointed out, and the
results were announced. Set 2 was held a week after that and all those who were successful in set 1 were invited (they made
usually 30% to 50% of the total); sometimes teenagers who failed at set 1 were also allowed to participate in set 2 as well as
those who missed set 1 for some reason2 (generally, because of an illness; these were placed in special rooms.) The problems of
the second set were considerably more difficult than those of set 1. In each set 5 or 6 hours were allotted to solve problems.

Finally, a week after, the problems of set 2 were discussed. Usually famous mathematicians were invited to review the
problems conceived mostly by under and post-graduate students. The purpose was to combine descriptions of problem solutions
with indications of broader perspectives in “big mathematics”. Thus, one of us saw A. N. Kolmogorov in front of an audience
that consisted mainly of several hundred of 8-th graders who started from two problems of the 38-th Olympiad (Problems

1Later renamed “Fizmatgiz” (The Phys. and Math. State Publishers) and now called “Nauka” (Science). Whatever the
name, the books were increadibly cheap Où sont les naiges d’autrefois? Où sont elles...

2This happened usually on recommendation of a member of the organizing committee who had noticed the originality of
a teenager’s thinking, and sometimes by personal request from a teenager; the objective was to attract kids to science, not just
to gauge their sports skills.
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38.8.3 and 38.8.4) and went over to discussion of modern issues of discrete mathematics (the graph theory and the information
theory).

Then there was an awarding ceremony. The winners were given prizes: piles of mathematical books (1 m high) with
dedicatory inscriptions. There were on the average about 10 first prizes (for different grades), twice that many second prizes
and the thrice many third prizes. In addition, there were certificates of merit, of degrees 1 and 2. The results in set 1 were
usually not taken into consideration in summing up the Olympiad and awarding the winners.

There was a three years’ interval during the World War II from 1942 through 1944; during these years Moscow mathe-
maticians held a number of olympiads in Ashkhabad and Kazan instead. Regrettably, we could not find any records of these
events.

During the first five Olympiads all students were offered the same problems; beginning with Olympiad 6 the problems
(and the students) were divided into two streams: for 7–8-th graders and for senior students.

Starting with the 15-th Olympiad (1952), the contest was held separately for each grade although some more interesting
problems were given in parallel to several grades.

From the very beginning, a great assistance in organizing the Olympiads was rendered by the Moscow City Department
of Public Education and the Lenin Advanced Training Institute for Teachers (abbreviated in Russian as MGPI, the Moscow
Pedagogical Inst.). The staff of the latter together with experienced teachers and university mathematicians began to hold
district olympiads in 1949. Their problems are given in ref. [SCY2]. They allowed to involve in mathematics a greater number
of school pupils and not only senior graders but pupils of 5-th to 7-th grades as well.

While the mathematical circle for high school students had been the predominant form of extra-curricular mathematical
activities for about a quarter of a century, the Moscow Olympiads focusing all lines of those activities, their forms have
been noticeably diversified for the last 20 years. Specialized mathematical schools were set up and in 1963 many circles were
combined in a new structure called “evening mathematical schools” to be followed a year later by “correspondence (extra-mural)
mathematical schools”. Following the example of Moscow University, other higher educational establishments in Moscow started
to hold mathematical olympiads of their own, and along with city olympiads there appeared a system of Republican, National,
and, finally, International olympiads. However, the Moscow Olympiads continued to be something special for many years since
their awards were considered to be a great honor and the standards of their problems were much higher than those of all other
mathematical olympiads.

In 1961, teams from regions and Union Republics were invited to attend the 24-th Moscow Olympiad and so the unified
multistage mathematical olympiad was began on the national scale. The first National Mathematical Olympiad was held on
April 16, 1967 in Tbilisi. Since the second set of the 30-th Moscow Olympiad took place on the same day, the Moscow team had
to be made up on the basis of the results of the first set of problems. Later on, the periods of Moscow Olympiads were shifted
back from April to March (and sometimes to February) in order to have time to select a team for the National Olympiad held
in mid-April.

At first, the Moscow team was selected directly from the results of a Moscow Olympiad. Later on, additional “qualification
sets” were arranged where 15 to 20 people were invited, including those who had been awarded first, second and sometimes
third prizes. The qualification problems were selected, as a rule, out of those which had been considered for the olympiad but
were rejected as too difficult or because of unclear formulation (it is much easier to make a problem clearer for 15 participants
in the qualification contest than at an olympiad with many hundreds of participating teenagers of various levels), or simply
because they were too many. But the qualification contest has never been regarded as an additional (final) set of an olympiad.
Certain problems from these competitions are given in Selected problems.

H.9. An accident that cased an important innovation. Once, an additional set was held: at
the 33-rd Moscow Olympiad for 7-graders (1970). It was called “Pythagoras’ Day”. That year a disaster
happened: The VC lost the briefcase with all papers of the 7-th grade. So the organizing committee decided
to run another set. But it deviated from the established tradition. First, the teenagers were given three
problems. Two hours later their papers were collected and a break for half an hour was announced after
which three more problems were given.

Regrettably, it is impossible to repeat this procedure at a regular olympiad since it proved to be very
difficult to collect even 7-th graders after the half-hour break and what could have happened if not a hundred
but several thousands schoolchildren were set loose for half an hour to run about? It sometimes happened
at Olympiads that teenagers stormed the unmanned locker room leaving behind a small pile of buttons torn
off in the process . . .

Another innovation — pity, this did not become a regular practice — was of greater interest: one of the
problems on the Pythagorus’ Day (33.D.7.2) was suggested by the organizing committee with no definite
solution known. The participants were told that it was a research problem and they should try to advance
as far as possible in solving it.

H.10. Two exceptional first prizes. There have been occasions when the first prize (no less!) was
given to those who had not completely solve any (!) problem.
• At the 9-th Olympiad. Erik Balash, a 10-th grader, spent the entire time of the Olympiad trying to

solve just one problem (9.2.9-10.2): For the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . find whether among
the first 100 000 001 terms of the series there is a number ending with four zeros.

The organizers thought that the students would try to solve this problem by means of relatively simple
considerations related to Dirichlet’s principle. But Balash approached the problem from quite a different
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angle. He decided to give a full investigation, i.e., to indicate the numbers of all terms in the series, which
end in four zeros. For this purpose, he conducted an arithmetic investigations which he failed (or had no
time) to complete. Erik pointed out correctly that the first term ending in four zeros is the one numbered
7501 and found the law of recurrence of such terms further on. The solution was marked (±!) and Balash
got the first prize although he did not even start to solve the remaining problems.
• At the 8-th Olympiad. The organizers believed that the following Problem 8.2.7-8.4 was relatively

easy.
Vertices A, B, and C of triangle ABC are connected with points A′, B′, and C ′ lying on the opposite

sides, but not in the vertices, see Fig. H2. Prove that the midpoints segments AA′, BB′, and CC ′ do not
lie on the same straight line.

Figure 2. (Sol. AH2)

Indeed, the midpoints M , N , and P of the pointing out segments belong to the midlines DE, EF , and
FD of ABC. Hence, the assertion required, since no line passing through the vertices of the triangle can
cross all the sides in their inner points.

The organizers believed the statement italicized is obvious. However, a participant, Yulik Dobrushin
from the 8-th grade (now the world-famous mathematician, Roland Lvovich Dobrushin, Dr.Sc.), reached this
stage in the solution and added: “For a long time I have tried to prove that a straight line cannot cross all
three sides of a triangle at their inner points but failed to do so. I am horrified to realize that I do not know
what a straight line is!”

Dobrushin was crowned with the first prize for this frank recognition of his failure. The members of
the organizing committee might have understood the meaning of Dobrushin’s phrase better than its author
himself. The point is that in modern geometry the answer to the question what is a straight line is given
only by listing the line’s properties among which the impossibility to cross all three sides of a triangle (or
an equivalent property) is usually included.

H.11. The rise and fall of the Olympiads. The main mathematical forces in the USSR had been
concentrated at the “mekh-mat” of Moscow University and at the V. A. Steklov Institute of Mathematics
of the USSR Academy of Sciences until the 1960s. Later on many young mathematicians appeared also
in other educational and research institutes1. They were very enthusiastic about preparing problems and
holding olympiads: to preserve the spirit of science. Some institutions of higher education in bigger towns
started to arrange their own olympiads and, in addition, the level of district olympiads was raised.

It was decided that Moscow Olympiads should (1) be held by Moscow University jointly with MGPI (Moscow Federal
Teachers Traning Institute) and the Moscow Institute of Railway Engineers (MIIT)2, and (2) have only one set for junior grades.

The grades were divided among the Institutes. The Moscow University was to hold the olympiads for the 7-th and 10-th
grades while MGPI took the 8-th graders and MIIT the 9-th graders.

The olympiads for the 7-th grade has been conducted by the Department of Computational Mathematics and Cybernetics
of Moscow University since 1981 (and now it runs the olympiads also for 9-th graders). The organizing committee meets to
discuss problems, to sum up an olympiad and, for other matters held jointly, at the Moscow University, as a rule. The review
of the results and the awarding ceremony also took place there.

The first set of the 37-th Olympiad (1974) was held only for pupils of grades 9 and 10 while at the 38-th to 40-th
Olympiads it was provided only for 10-th graders. The results of the first set were taken into account in the general review and
the participants who had solved the problems of the first set received a prize or a certificate of merit one degree higher than
they would have been entitled to simply from the results of the second set.

1Thanks to the state antisemitism: they were not admitted to the principal Universities.
2This was done in 1975.
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Starting with the 41-st Olympiad (1978), it was decided to hold only one (final) set for all school grades since the role of
the first set was played by the district mathematical olympiads whose winners were allowed to participate in the final of the
Moscow Olympiad.

We will not dwell here on matters pertaining to the work of the organizing committee. Suffice it to say that the holding of
an olympiad, publication of the collection of preparatory problems, compilation of a long list of new problems and selection of
variants of the olympiad’s problems requires a tremendous effort whose magnitude the majority of the participants do not even
approximately appreciate and which would have been impossible without enthusiasm of, mostly undergraduate, mathematics-
major students and post-graduates and without help from the Moscow Mathematical Society and other organizations.

When an olympiad is held, the working day of the organizing committee members may last from early morning till late
at night. The papers are checked and rechecked several times and quite a few teenagers got their certificates due to attentive
members of the organizing committee, who were not lazy to reread carefully the solutions to find the grain of rationality in
them.

The teachers and school pupils most often ask if a pupil who did not attend the circle has any chance
to win an Olympiad?

There is only one answer to this question: yes, of course one has. (But the point is that this question is
a “wrong” one: we would like to teach to value mathematics, rather than the accompanying sports.) Among
the winners there always were kids who had not been members of any mathematical circle. Many of the
participants and winners of an Olympiad came to the circle on the subsequent academic year and then took
part in Olympiads (or, sometimes, willingly refrained from participating; having made a choice between
sport and science). Of course, the systematic studies in the circle, the mathematical culture and skills in
solving mathematical problems acquired there came in very handy for participation in an Olympiad.

While the circle involved several hundreds of Moscow teenagers in systematic work, the number of
participants in a Moscow Olympiad was always considerably greater and was as high as several thousands.
For example, in 1964 there were over 4000 participants, the 1966 Olympiad was attended by about 5000
boys and girls while in 1974 their number reached 6000(!).

True, this figure decreased later but still the count was in thousands; a thousand school students came
to the jubilee Olympiad in 1985. all rooms at the University were overcrowded in those years and some of
the participants had to be placed in laboratories of the physical, chemical and biological departments.

H.11. Tournament of towns.
H.12. On relation of olympiad problems with the “big” mathematics. As for the olympiad problems, there are

stringent requirements: the problems should be diverse in form and in ideas they are based on but their solution should not
go beyond the limits of the existing school curriculum. Two in five or six problems are generally simple; algebraic and text
problems alternate with geometric ones while their complexity usually grows as their number increases in the assignment list.

Notice that the problems given at olympiads are non-standard. Their novelty and attractiveness can be explained to
a great extent by the fact that they are inspired by fresh ideas of modern mathematics and every one of them is a small
investigation opening up new horizons for the person who tries to solve it. Quite a few olympiad problems are related to
“serious” mathematics. Here are some examples of such problems:

Problem 9.2.7-8.4 came from crystallography and is related to growth of crystals. When crystals start to grow in a
solution, a crystal stops growing if it comes up against another crystal (in the problem “a car finds itself in front of a road
block”).

Problems 9.2.7-8.5 and 9.2.9-10.5 are related to the theory of projective planes over finite fields.
Problem 13.1.9-10.1 was taken from the “Imaginary Geometry”, the famous book by N. I. Lobachevsky, one of the

discoverers of the non-Euclidean geometry and the one who described its theory.
Problem 15.2.10.1 is associated with Lagrange’s problem in celestial mechanics.
The concept of an “attracting” point and a “repulsing” point in the iteration method was reflected in Problem 20.2.10.2

(all equations of the problem have the same form “iterating”, so to say, the first equation).
The solutions of Problems 21.1.10.5 and 31.2.7.5 use the concept of the world line in time and space.
26.2.8.1 is a problem on Young tableaux used in the representation theory of symmetric groups.
29.2.8.3 and 29.2.9-10.3 are typical problems of the information theory.
Problem 30.2.10.1 is “the exchange transformation” from ergodic theory.
31.1.9.4 is the first problem in the coding theory (“the check for evenness” by Hamming); cf. also Problem 30.1.8.3.
The question raised in Problem 47.10.2 is related to the one of the ways of tight packing of information in computer memory

while Problems 45.7.1, 45.10.3 and 48.10.3 are indirectly connected with the theory of algorithms and computations.
Problem 48.9.5 was taken from the note-books of one of the greatest mathematician, Leonard Euler, and is connected

with the ideal theory.
The fast speed of convergence to a fixed point (to

√
2) in Problem 49.8.3 was occasioned in the general case by Newton’s

method for finding roots of the arbitrary function f(x).
Problem 49.10.5 is related to the theory of approximations of functions.
The list of examples can be extended further (e.g., to indicate some problems from the number theory) but unfortunately

it is impossible to explain the idea in more detail if we want to remain on the high school level.
The school curricula have been changed several times for the last 50 years and new trends in the curricula immediately

affected problems of Moscow Olympiads. So in certain years there were given problems on complex numbers, problems with a
derivative, etc. Our solutions and hints correspond to the present school curriculum although it is worth saying that a different
(often more cumbersome for the lack of an adequate language) solution was expected from the participants in some cases. For
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example, in Problem 15.2.10.1 we made use of the properties of the integral, well-known to today’s school pupils, and gave a
solution taking up just a few lines (in contrast to the two-page solution of this problem in [SCY].)

H.12. What makes Olympiads run. Despite the great help of enthusiasts, the compilation and selection of an
olympiad’s problems is one of the most arduous tasks in the work of the organizing committee. It is the subject for debate at a
number of meetings that last for many hours and where the organizing committee members argue till they are blue in the face
fighting for some problems and rejecting others. Problems may change beyond recognition before one’s eyes; sometimes several
seemingly quite different ideas are integrated into one problem but sometimes, on the contrary, one problem disintegrates into
two or three others that may be from different mathematical disciplines.

When problems are selected for an olympiad, they have to be kept in secret, on the one hand, but, on the other hand,
attempts are made to find out whether heads of circles (who never are members of the organizing committee) have ever given
the same or similar problem to their disciples. This was always a delicate matter since a problem unknown before could be
made public by chance and so spread widely among students. So the final selection of problems have always been quite difficult.

As the olympiad approaches, the ‘problem rush’ increases more and more. More often than not, the final list of problems
is approved one or two days before the start but it has also happened that the list was typed during the night on the eve of
an olympiad. So one should not blame the organizing committees of olympiads for a rushed work in this respect since it was
the compilation of final variants literally on the eve of contests that made it possible to keep the problems in secret and also to
take advantage of lucky discoveries made, as usual, at the last moment.

The complexity of problems at olympiads varied noticeably in different years. The most difficult problems of early olympiads
which were solved by just a few participants, now look nothing out of the ordinary. The inquisitive reader will notice that the
style itself of later problems has changed substantially as compared with that of the first olympiads. However, the complexity
of the olympiad in each particular year has always been very high. Sometimes it was impossible to make variants easier however
hard the authors worked on it. There have been some particularly difficult olympiads, including the 27-th (1964), 29-th (1966),
31-st (1968), and 35-th (1972). Nobody solved some of the problems in these olympiads (we can cite as an example Problems
29.2.8.5, 31.2.8.2, 31.2.8.3, and 35.2.9.3) and sometimes only one participant succeeded (e.g., Problem 35.2.9.1).

The jubilee 48-th Olympiad (50 years of Olympiads) can not be called very difficult; still, it had problems that none of the
kids in the respective grade could solve (48.7.4, 48.8.5, and 48.9.5). But all this is exception rather than a rule; every problem
at most olympiads was solved by at least one participant and there were difficult problems solved by many participants.

The spirit and nature of an olympiad, and the content and complexity of its problems were affected to a great extent by
the professors of mekh-mat, who headed the organizing committee in different years and who were entrusted with this task by
the Board of the Moscow Mathematical Society.

Here is the list of the Chairpersons of the Organizing Committee:
Olympiad Year Chairperson Olympiad Year Chairperson

1 1935 P. S. Alexandrov 23 1960 I. R. Shafarevich
2 1936 N. A. Glagolev 24 1961 V. A. Efremovich
3 1937 A. N. Kolmogorov 25 1962 N. V. Efimov
4 1938 A. G. Kurosh 26 1963 A. N. Kolmogorov
5 1939 L. A. Lusternik 27 1964 I. R. Shafarevich
6 1940 L. S. Pontryagin 28 1965 N. V. Efimov
7 1941 A. O. Gelfond 29 1966 A. A. Kronrod
8 1945 I. M. Gelfand 30 1967 V. V. Nemytsky
9 1946 S. A. Galpern 31 1968 N. S. Bakhvalov
10 1947 I. G. Petrovsky 32 1969 V. A. Efremovich
11 1948 V. V. Nemytsky 33 1970 V. M. Alekseev
12 1949 A. I. Markushevich 34 1971 I. R. Shafarevich
13 1950 M. A. Kreines 35 1972 B. P. Demidovich
14 1951 B. N. Delone 36 1973 A. A. Kirillov
15 1952 P. K. Rashevsky 37 1974 V. I. Arnold
16 1953 D. E. Menshov 38 1975 A. N. Kolmogorov
17 1954 S. V. Bakhvalov 39 1976 A. V. Arkhangelsky
18 1955 G. E. Shilov 40 1977 V. A. Uspensky
19 1956 E. B. Dynkin 41 1978 Yu. I. Manin
20 1957 O. A. Oleinik 42 1979 V. M. Tikhomirov
21 1958 V. G. Boltyansky 43 1980 A. S. Mishchenko
22 1959 E. M. Landis 44 1981-?? O. B. Lupanov

After 1981, the prime of “stagnation period”, and by inertia after it the Chairman was the Dean of mekh-mat, Prof.
O. B. Lupanov.

The Chairpersons of the organizing committee usually did not overwork. The Vice-Chair, on the other hand, not only
worked hard to arrange the event but also headed the numerous meetings of their organizing committees, etc.

The VC had several main assistants, including heads of school grades. Among VC ’s numerous responsibilities were
arrangements for lectures to be delivered to the school students, putting up posters of the olympiad, the run of the olympiad itself,
publication of the collection of preparatory problems and blank forms for certificates to be awarded to winners, arrangements
for the rooms where the olympiad is to be held, to be followed by reviews of problems and the awarding ceremony, etc. In
addition, the VC had to participate in discussions of problems and help to conceive them. One of the authors of this book
served as VC and can testify how difficult this job is.

The grade’s managers are also very busy; in addition to helping the VC in organization, they must also select the problems
they like best for their respective grades to be used later by the organizing committee in the final variant of problems for a
particular school grade. They should also supervise the progress of the olympiad in their grade, go round the rooms and answer
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questions of participants (to an extent specified by the organizing committee in advance); organize the checking of the papers
in their grades, and find the best papers presenting all ir decisions to regular meetings of the organizing committee.

When an olympiad is in progress, it is served by many university students who help the school pupils to find their rooms,
sit in the rooms (answering questions if necessary to an extent specified by the organizing committee in advance), see to it that
the corridors and toilets are not turned into discussion clubs by the participants, and collect papers at the end. Then heads of
grades distribute the collected papers among the university students for checking and grading.

H.13. How grading is being done. The grading is the most important part of the job; it often happens that an
interesting paper is read by several members of the organizing committee and those nominated for an award by all members.
The diversity of demands placed on papers makes the opinion of each individual member of the organizing committee rather
subjective and it is only the collective discussion makes the final decision correct and objective.

The papers are evaluated not in marks as at school but using a more flexible system of pluses and minuses. The marks
that a solution may get are:

(0) there was no attempt to solve the problem;
(−) the problem was not solved or solved incorrectly;
(−?) the solution is wrong and contains very bad errors;

(−· ) the problem was not solved but there are some reasonable considerations in the draft or in the clean copy;

(∓) the problem was solved incompletely but the approach is correct;
(±) the problem was not solved completely;
+

(−)
the problem was solved but the solution contains small omissions or defects;

(+) the problem was solved completely;
(!) the solution contains unexpected (and sometimes even unforeseen by the organizing committee) bright ideas.
Other marks are also used sometimes (e.g., 1/2, ε, etc.). It should be noted that the mark (!) does not mean that the

problem was solved. For example, there are often marks −!, ·!, ∓!, etc. However, even (–!) increases considerably the chance
to get a prize.

Everything is taken into account when prizes are awarded, including the correctness of a solution, the clearness of the
mathematical thought, originality of the solution, the completeness and fullness of the investigation, the nature of the description
of fine points, etc. However, the handwriting and the tidiness in the arrangement of the material, as well as the general
appearance of a paper are never considered, unlike the regular procedure in a usual school. The greatest importance is attached
to non-standard reasoning, unexpected solutions, and the original interpretation of the conditions of a problem.

H.14. Anecdotes from the history of Moscow Mathematical Olympiads1. Olympiad is a great event for
schoolchildren who are interested in mathematics. The faculty members and the students at the Department of Mechanics and
Mathematics of Moscow University are barely able to cope with the multitude of questions fired at them by excited teenagers
and sometimes by no less excited teachers:

“When will lectures be provided for participants in the Olympiad?”
“Are any consultations planned?”
“Is it only for the best pupils or for all?”
“Where can we get problems for practicing and how many of them suffice to be solved?”
“Will a boy be permitted to participate if he is only from the 6-th grade?”
“Can we bring textbooks with us?”
The stream of similar questions never stops.
• The desire to be as objective as possible and the great awareness of the organizing committee members of their duty

sometimes resulted in curious situations. Consider just one such case. At the 21st Olympiad, a paper by Misha Khazen who
had solved four problems out of five was nominated for the first prize. Unfortunately for him, Lida Khazen, Misha’s sister, was
a member of the organizing committee. She stated with assurance that Misha had known a solution of one problem before the
Olympiad (although he solved it himself), that he was not going to apply to the Department of Mechanics and Mathematics
anyway, and so he should not be awarded the first prize. The members of the organizing committee spent a lot of time trying
to prove to Lida that the inclusion of a known problem into the Olympiad was the fault of the organizers but not Misha’s,
that the accidental relationship of Misha with one of the organizing committee members allowing them to learn what he knew
and what he did not know put him in more difficult conditions as compared with the others, that the question of entering the
University was of no importance, that, in general, they discussed the paper but not its author, and so on. Nothing helped. The
poor girl was on the verge of crying and only the democratic procedure of voting (perhaps an hour or an hour and half after
the debate has started!) made Lida agree.

• For a long while it was a custom to include in the final list of problems the one whose answer is the year of the current
Olympiad. The following solution of one of the participants of the 33-rd Olympiad put an end to it: “At every Olympiad there
was a problem whose answer was the year the Olympiad was held. In this Olympiad the problem I am solving is the only such
problem. By the induction, the answer: 1970”. (Cf. Problem 33.2.7.4.)

H.15. Who did what (very incomplete). Several generations of outstanding mathematicians have worked on the main
material of this book — the problems — and some of the problems are really nice. To find the authors of most of the problems
is impossible. Besides, part of interesting problems are results of brainstorms held at the meetings of the organizing committee,
and so they have a collective author.

However, the most beautiful (in our opinion) and original problems were devised by individual authors and we are sorry
that can not mention all of them. Such problems were widely spread first among the organizing committee, and, after the
olympiad, became a mathematical folklore. Experts recognize them at once by their nicknames. Here are some authors of such
problems (this list is incomplete in every sense; we hope that the authors not mentioned will not be offended):

N. N. Konstantinov: 17.2.7.5 (Triangular City) and 23.2.8.4 (Snail); S. A. Eliseev: 38.2.9.5 (Non-convex Cutting);
D. B. Fuchs: 24.1.8.2 (Scalar Product), 27.2.11.5 and 31.2.9.2 (Fuchs’ Arcs); G. A. Galperin: 33.2.7.6, 34.2.7.5, 38.2.10.4,

1Some of these stories might sound strange for the Westerner, more used (and sometimes prone) to esteem the law.
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33.2.7.6 (Courtiers of King Louis), 38.2.7-10.1 (The 2s, 3s and 4s), 39.2.9.5 (Nickels) and 48.9.2 (The Airfields); S. B. Gashkov:
46.10.3 (The Turing Machine), 48.7.4 (Wolves and a Hare) and 48.10.3 (Complexity); B. D. Ginzburg: 23.2.9.3 (Knight’s
Way); A. I. Gruntal: 36.1.10.4 (The Polyhedron); V. Gurvich (a complete graph); V. G. Kac: 30.2.9.5 (A King of Spain);
M. P. Kovtun: 34.10.5 (Matches); A. V. Klimov: 37.2.10.3 (Asteroids); S. V. Konyagin: 42.8-10.5 (Chemists & Alchemists);
A. G. Kushnirenko: 33.2.10.1 (The Orange); O. V. Lyashko: 35.2.7.4 (The Knight-Errand); A. P. Savin: 33.1.9.1 (Extreme
Kings); I. N. Sergeev: 48.8.4(Uncle Chernomor2); A. S. Shvarts: 24.2.9.2 (Shvarts’ Matrix); A. C. Tolpygo: 30.2.7.3 (q · 21000),
30.2.8.5 (moovies), 31.1.9.4 (telephones), 32.2.7.3 (a trickster) and 32.2.10.1 (wizards); A. L. Toom: 35.1.9.3 (The Forest);
N. B. Vasilyev: 25.2.10.4 (The Box) and 26.2.8.5 (Gentlemen); A. V. Zelevinsky: 34.2.10.3 (Banker and Gambler).

One of the problems of the Pythagorus’ Day (33.D.7.5), as it turned out, suddenly became quite popular outside the
USSR. “Mathematical Gardner” [Kl] contains its generalization for the case of a “many-handed Ali-Baba” given in the section
entitled “Entertaining Table-Turning”. It said there that the problem visited first the pages of Scientific American in 1979,
where it was published by Martin Gardner, a famous popularizer of mathematics, well-known to Soviet readers from a number
of books and articles (see refs. [G1]–[G14]). However, Gardner admitted that he had got this problem from “Robert Tappey
who believed that the problem had come to us from the Soviet Union.” ([Kl]). Thus, Problem 33.D.7.5 has come a long way
before returning home (anonymously), albeit in a generalized form.

The authors of the latest Olympiads, held in the copyright era, were mentioned explicitely on various liflets issued on the
occasion, so we dutifully reproduce the information.

The list of authors is easy to extend but almost impossible to complete (let alone the fact that the above mentioned authors
suggested far more problems from this book than we mentioned); some authors donated many problems without bothering for
stacke claim (like Joseph Bernstein, who in his time solved all problems offered in Olympiads he participated). We apologize
to all authors of problems for Moscow Mathematical Olympiads who are not mentioned.

2The Russian reformulation after a fairy-tale hero.



A little problem

I. Zverev

To Mark Scheinberg, a much honored student of the
9-th grade and the winner of many a mathematical olympiad,

with the highest respect from the author who can hardly
remember the multiplication table.

“Well, that’s it,” Leo said. “Settled and signed.”
“Who by?” Mashka asked.
“By myself,” said Leo solidly and looked at her in a severe schoolteacher’s way, his eyes like goldfishes behind his glasses.

“Not enough for you?”
“And also by me,” Yura Fonarev added.
“O.K., count me in then,” Mashka sighed. ”I agree.”
“What do you mean ’you agree’? Nobody’s forcing you.” The boys looked at her with indignation.
“It would be too much if you forced me.” Now Mashka got angry. “Too much, really.”
“There, there,” Leo said soothingly. “You won’t regret it. You’ll be grateful. Do you know what kind of school it is?”
Mashka knew no less than they did. They had been there together on the Open-Day.

A week earlier, Ádochka (this meant Ariádna Nikoláyevna, their math teach), had informed Leo, their class genius, that
there would be such an occasion and so she would advise him to . . . .

The three of them went together. The school was really amazing. The classrooms were not called classrooms but audito-
riums, one of them even had a computer1. The lessons were called lectures and they were given not by schoolteachers but by
professors from the University, among them even one full professor with the doctoral degree.

Of course, the students there might have stretched a bit but prodigies there really seemed to fulfill the freshmen’s and
partially sophomore’s curriculum in the 9-th grade. So it would have been ridiculous for those who were not straight A students
to even think of getting in.

Yura had two B’s, Leo had no B’s, but he had an uncomfortable C in German. Mashka, of course, had lots of B’s.
When the Open-Day was almost over and the boys were about to leave, there appeared the principal of this special

mathematical school. He was a rather strange man, cross-eyed, with a big nose and wild hair, just like Leo’s but grey. He said
right away that those who were not entirely straight A students, but talented nevertheless, shouldn’t give up; for it was the
results of the Mathematical Olympiad that would count most of all.

It was, therefore, settled and signed that all three should go to the Olympiad on Sunday and take a chance.
Mashka didn’t think it was such a great idea to try and enter this mathematical school. She had other plans. She didn’t

know exactly what, but no doubt they had nothing to do with mathematics. It wouldn’t have been fair, however, to leave the
boys alone at such an important moment, so she would go and flunk, of course, but still give their morales a boost.

“Are you going too?” asked the surprised Ariadna Nikolayevna and immediately blushed. Perhaps she was afraid Mashka
might get offended.

Adochka was very kind, and when she accidentally hurt somebody always suffered terribly. She started to worry and tried
to soothe the offended.

“I’ll do it just to keep the boys company,” Mashka comforted her.
“Oh, no!” Adochka cried excitedly. “I’ve always said you are talented . . . just a bit lazy . . . But if you try and organize

yourself you may gain . . . I mean, achieve . . . .”
She said nothing more because she was honest and knew well enough that Mashka could never gain anything in mathematics,

let alone achieve.
Mashka’s father was also surprised. He said, “Oh, my!”
But since he held a doctorate in philosophy he felt he had to philosophize a little. So he told Mashka’s mother how

wonderful it was that their daughter had chosen such a nice field of activity, where everything is simple and clear, directives
are definite and not subject to frequent change.

“But in that field you have to have a regular head on your shoulders!” Mashka’s mother exclaimed and sent Mashka away
to do her homework.

0From The Second of April by Ilia Zverev, Soviet Pisatel Publishers, 1968
1The western reader should look at the year this had been written: at that time computers were at best discussed in the

newspapers in Russia.
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Leo’s father got very excited when he heard about the Olympiad. He started to pace back and forth and rub his bald head
that perhaps once grew the same kind of black wire-like hair that his wonderful son had now.

“Listen, Leo,” he said at last, “you know, physics is somehow more promising these days. Perhaps there’s rocketry physics
or something?”

“So what?” Leo said condescendingly. “I, for instance, like math.”
Still, Leo’s father would be extremely sorry for his son to get involved in a second-rate science, or even a first-rate one, if

it were not the main one.
“With your abilities,” he cried, “you could . . . ”
“Enter a school where they teach how to run ministries,” Leo prompted gloomily. “It’s hard enough to enter this one.

They take only one in twenty two.”
His father immediately found another subject to worry about: “What if they don’t enroll you, Leo? You must go to your

headmaster,” he said, “and to the Young Communist League, too, and get letters of recommendation from all of them. Make
them write that you are one of the best students and a member of the committee . . . and about the physics club that you are
the monitor of . . . ”

“Oh, God,” Leo said. “And that I bought a light bulb for the physics classroom with my own 30 kopeks. That’s also a
feature of my character that is a visible sign1.”

“Don’t show your wit here,” his father ordered. “I’ve lived longer and I know better what plays sense in cases like this.”
Leo’s father was a musician. He played the trumpet and perhaps that’s why he thought one could play anything, even

sense. He was not too literate because he had joined an orchestra as a prodigy right after his fifth year in elementary school.
Of course, now times were different. Prodigies had no privileges. On the contrary, they had to study five times as hard as all
the others. Leo put all this into one sentence:

“Daddy, you are out of tune.”
But after thinking it over he did decide to get the damn recommendation. It really was highly unlikely that anything of

the sort would be required.
Finally, came the morning of the judgement day. That was how Yura chose to call it. For everyone else it was an

easy Sunday morning but for 563 students “talented in mathematics”, as they were formally called, that morning was most
uncomfortable . . . .

The boys crowded the wide University staircase decorated with statues of various bearded thinkers. Some of the crowd
stood motionless, staring upward and silently moving their lips, perhaps praying or, much rather, solving problems. Others
were nervously discussing tricks from the last Olympiad, and of the one before the last.

The girls stood separately. They were bespectacled and very serious. “Abstract”, as Yura put it. One with a forelock was
surprisingly cute. It was hard to understand what such a beauty needed mathematics for.

The most brave (or, more precisely, the most anxious) had the nerve to come with their parents, and now, shy and suffering,
they received fatherly advice and motherly instructions.

“Most important, don’t be nervous,” a fat red-faced woman in a fur-trimmed coat kept saying to a fat pink-cheeked boy.
“I beg you, Noughty!”

What a mathematical name, Noughty. Wonder, what his real name was? Arnold, perhaps? He was pretty nervous, that
Arnold ‘boychick’. He’d flunk just from fright. Well, actually everybody was rather nervous that morning. Even Yura and Leo,
speaking frankly.

In the midst of this excitedly buzzing, breathing, stirring and even steaming crowd, two boys were distinctly out of place,
like an iceberg. They were indifferently sitting on a step playing deadman. The older one, in glasses and ski trousers, lazily
pronounced after each move: “Aha, oh, well, if you do that, we do this . . . ”

“That’s Guzikov,” Yura whispered respectfully. “Second prize at the National Olympiad.” He sighed. “Of course, he can
do whatever he wants now, even play deadman.”

At last, a tall young man carrying a briefcase appeared at the entrance. He made a frightening grimace and shouted:
“Welcome, friends! We are starting.”
Everybody began to push one another and loudly tramped their way through the shining marble hall into a very big room.

Only Leo lingered at the entrance before an enormous sheet of white drawing paper. It declared:
“STUDENTS! ADDRESS YOUR QUESTIONS TO A. KONYAGIN, ROOM 9”.
Leo just had one. He went to Room 9.
A. Konyagin, the question authority, turned out to be the young giant who had just shouted, “Welcome, friends!” He again

made a bestial face and said in a very kind voice:
“Please, ask. I’m listening.”
Leo thought this young man could be one of the poor “antipeople” Ryasha told stories about. Ryasha was a dreamer of

course, and liked to fib but this particular story sounded real. He said there were such “antipeople”. Ryasha even remembered
their Latin name, very impressive — “homogeneous lupusest”. They could never do what they wanted. If such an antiguy, say,
wanted to cry, he would laugh instead, and if he wanted to run around, he would go to bed immediately instead. Ryasha swore
that it was a quite established scientific phenomenon, well-known in medicine. He might know, after all, since both his parents
were doctors.

“Well, what is it?” Konyagin got angry and his face turned accordingly kind. “Speak up!”
Leo asked his question. “Do they require letters of recommendation? What other papers are needed?”
“Papers? That’s where your papers are!” Konyagin knocked on his protruding forehead. “Here is your recommendation

and reference, and permit. Clear? Then, go ahead!”
In the big room, called auditorium No. 1, stood twenty rows of benches. Very long benches they were, and each had a

desk in front of it.

1[of a Communist morale]. A word from mass-media cliché of that time; (like pledge of allegiance in American schools).
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“Two at each desk, not more,” said the question man Konyagin and headed down the aisle. Five scientists, also young
and looking very important, went after him, distributing paper.

“The sheets are stamped,” Konyagin said as he walked. “Don’t even think about cheating. No way! We are not so old
here. We still remember all the tricks ourselves. Mind that!”

“So it was OK with you?” someone squeaked challenging. Perhaps it was that Noughty one, that pink boychick with the
mathematical name.

“But I never cheated in math!” said the question man proudly, at which his assistants burst out laughing for some reason.
Each had his own problem. No ordinary problem about the Collective Farm “Shining Path” that bought two tractors and

three vans while the Collective Farm “Dawn” acquired seven tractors, etc. No, these assignments were quite different.
Yura had one about King Arthur and his knights. Knowing that each knight was at war with half of the others, how

should King Arthur’s right hand man, Sir Lancelot, arrange them around the table so that no one should sit beside his enemy?
“What have you got?” Yura asked Leo. Of course, he had to know about Leo’s problem first.
Leo had a problem about chess players. Eight chess players took part in a competition and each finished with a different

score. The second best had the same score as the four worst combined. What was the score of the game between the fourth
and the fifth?

Leo thrust his fingers through his wild hair and began to breathe, moo and blink. This meant he was starting to work.
“Let’s reason!” he persuaded himself aloud. “Let’s think logically and calmly. Each of these guys played with each other

and either won, lost or drew. So the first one . . . But what am I doing?” Leo interrupted himself noticing that he plunged into
his business while his friend might be in trouble. “So, how many knights do we have?” He said it just like that, we.

Mashka, of course, could solve nothing but she could not go away because the boys might think that she had solved her
problems before them and feel uneasy. The possibility was pretty hypothetical: of course, the old friends could guess that
Mashka’s poor math wouldn’t work here. Still, she was pleased to think that, sitting there, she could somehow inspire these
budding Euclids and Lobachevskys.

She just shuffled her clean sheets of paper with purple official stamps and looked around at the people. There was a lot to
see for a detached observer. The great Guzikov wrote his figures as if he were playing piano. He thrust his head upwards, raised
his eyebrows and even jerked in rhythm to an inner music. Noughty was strangely calm. His pink face shone with satisfaction.
Perhaps he had been lucky enough to draw an easy problem.

Occasionally, a boy went to Konyagin and whispered for permission to go to the bathroom.
“Leave your pen here,” said the question man to one. “You don’t need a pen in there, do you?”
As more of the boys asked to go, the assistants looked at each other meaningfully demonstrating that, of course, they knew

the secret aim of those visits though the aim might not be secret but quite a natural one. After all, the Olympiad lasted five
hours.

Everybody, except Mashka, was suffering, writing or thinking. The cute girl with the forelock — Mashka could swear she
would solve nothing and had just come to show off her beauty to the young intellectuals — well, she was also writing and even
confidently and merrily.

She could hardly make anything out by looking at Yura and Leo, though naturally she was looking at them most of all.
They were whispering, looking into each other’s notes and arguing.

Unfortunately, not only Mashka saw that. Every now and then Konyagin looked at the friends and shook his head making
his antiface and antismiles. The boys continued whispering, writing and whispering again. The fools obviously forgot where
they were . . .

It all ended rather sadly. When Yura and Leo handed in their papers — not among the first, but far from the last — the
question man gave them a fierce smile, took out an enormous red marker and slashed on every sheet.

“Mark my word, something terrible is going to happen,” said Mashka.
But the boys were filled with joy of victory. They didn’t want to listen to reason. They jumped, nudged each other, and

shouted, because they had solved all their problems.
The joy reached the two families. Leo’s father was extremely happy but having regained self control he claimed that there

was nothing to be glad about, it was quite natural, and he had expected nothing less from his son, whom he knew as well as
he knew himself. He was much happier about the system where no papers were required, where they just said “go ahead, show
what you can do, and that’s your whole file”.

Of course, his father liked this system because he had always had to write in his application forms: “Education: incomplete
secondary school”, and some other things on top of that1.

Fonarev’s father, having heard Yura’s account, silently took his wonderful Poliot watch (written just like that, not in the
usual Cyrillic; but export make) off his wrist and gave it to his son. A quarter of a century had passed since his last arithmetic
class but his horror of the science had hardly diminished. Every other year or so, Fonarev’s father had the same nightmare:
his redheaded math teacher, Faina Yakovlevna, a swimming pool with two pipes, and Berezanskaya’s book of arithmetical
problems.

“Yes, Yurka,” he said, “a regular guy you are, that’s it! Nothing more to add.”
Mashka didn’t want any lengthy explanations. She just told her parents that she had not gone to the Olympiad, she had

merely changed her mind at the last moment, that’s all.
“But what did you do all Sunday?” Her mother was horrified.
“I was busy with my Russian,” replied Mashka.
“She means she was speaking Russian and no other language,” remarked her father sarcastically.
Two more weeks passed and again they went to the University. In the same auditorium No. 1, at the presidium table

were three Academicians, the hairy principal of the special mathematical school, a representative from the municipal board of

1In the standard questionnaire the line preceding the question on education required to state the ethnic origin which must
have been a trial for him judging from his (manifestly Jewish) name and appearance.
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education, and other officials. A. Konyagin was no longer in charge. He was somewhere in the seventeenth row with all the
other assistants who turned out to be just graduate students helping to run the Olympiad.

It was a ceremony held to mark the results of the competition of mathematicians. The representative of the education
department read a speech in which he emphasized achievements and pointed to some isolated shortcomings.

“We are also concerned,” he mumbled indifferently, “about the level of education in some schools.” At this point he at last
looked up and said sternly: “No, comrades, we are not alarmed. But, comrades, neither are we satisfied.”

And then, the chief Academician rose and handed awards to the winners. It turned out that the great Guzikov got only
the second prize. So did the cutie with the forelock. The first prize went to that pink Noughty, the mother’s darling. The boys
thought they knew people well but they made a mistake underestimating him.

That psychological miscalculation was not their worst disappointment. The list of winners was apparently about to be
exhausted and the friends hadn’t been called yet. At last the chairman finished announcing the winners. He folded his sheet in
two and then in two again and before leaving said:

“And, well . . . a Fonarev and, a mmm . . . Makhervax are requested to come to Room 9.”
I don’t like to describe what happened in Room 9. There weren’t any Academy members there, only the principal of the

mathematical school and a representative of the education board, the one who was neither alarmed nor satisfied. Konyagin was
also there and kindly smiling started to lecture the boys:

“What shall we do with you? Whom should we give the prize? You solved all your problems properly but you were
whispering all the time and we don’t know which of you did what.”

The boys started to explain that they had solved the problems together, they always did everything together, there was
no crime in that because history is full of such cases. They recalled Pierre and Marie Curie, or, say, Lomonosov and Lavoisier,
though they were not quite sure about the latter.

“Well, stop it,” said the representative, “it’s a matter of principle. The Olympiad was for individual work and prizes are
given to individuals. We have discussed this with the comrades and decided as follows. You work out who deserves more and
we’ll give him the award. The other will have to pass the entrance exams on the regular basis.”

“Here he is, Fonarev,” Leo prompted immediately.
“Write Makhervax in,” Yura shouted, regretting that Leo was the first to shout the right thing.
“There, there,” said the hairy principal. “Go and think. Come back tomorrow morning with your decision.”
When Leo’s father heard what had happened, he declared that he wouldn’t let it go just like that. To him it was a pure

crime to prevent the country from having two geniuses instead of one.
“Why ’prevent’?” Leo felt bad but not bad enough to compromise with his conscience. “It’s all right, I’ll just have to pass

the exams like everyone else.”
Leo’s father, who used to be a prodigy, as you might remember, didn’t like this “like everyone else” at all. He said that

it was not Leo’s business to discuss such serious matters; he would go to Yura’s parents and they would settle everything as
serious adults should.

So the parents started to decide. First, they spoke about the weather, then about soccer. At last Yura’s father decided
that the stress was too much and he said with dignity that he knew his son well, was sure about him and that Yura would
reach his goal whatever might happen.

Leo’s father readily agreed that Yura was a strong personality, no obstacles could stop him, while Leo, of course, was
rather unstable, no athlete, and wore glasses. So it would really be better to make it easier for Leo since Yura, as his father so
rightly noted, would manage anyway.

Here Fonarev’s father cried, “Oh!” because his wife had stamped on his toe under the table.
“No,” she said bitterly, “our Yura only looks strong. And his marks are not so stable. Two B’s, you see. But yours is

doing just fine. Of course it will be easier for him.”
“But he has C in German,” Leo’s father cried. ”Do you understand, C! That’s much worse than your two B’s.”
All three looked at each other rather ashamed. Somehow their talk was strange, even uncivilized.
“Katya, look to the kettle, please. I think it’s already boiling,” Fonarev’s father said crossly to Fonarev’s mother.
“Yes, really,” sighed Leo’s father. “It turns out rather unseemly.”
“Yes,” agreed Fonarev’s father, “looks foolish. “Then he suddenly beamed and suggested: “Let’s settle it fairly! Heads or

tails.”
“Heads or tails?” repeated Leo’s father with doubt. “Huh . . . all right then, tails.”
Fonarev took a coin out of his pocket, put it on his big black-rimmed nail, the coin flipped in the air several times and

landed on the table.
“Heads!” shouted the lucky one. Leo’s father shrugged and sighed.
“Maybe you think I cheated?!” asked Fonarev warily.
“No,” Leo’s father said sadly. “I didn’t think that.”
They didn’t talk for quite a long time until the kettle, which had not been about to boil, was ready at last.
But there was no reason for them to be so sad.
Everything was wonderfully settled already. Perhaps not too wonderfully but settled nevertheless. Yura and Leo accom-

panied by Mashka went to Room 9 and took the award paper from Konyagin. The paper had “Fonarev” on it because Leo had
managed to shout Yura’s name first.

When the boys came out of the building, they tore the paper in halves. First they wanted to tear it in three, because they
said Mashka had a right to a piece, but she protested. She said it was a token of their friendship, hardened in battle in which
she, although a friend, hadn’t taken part. Mashka said she would sew them special safe bags that they could hang around their
necks and hide under their shirts on most festive occasions. The boys nodded. All three thought it was an excellent idea. It
was quite proper for real knights, even for those they had helped to seat around King Arthur’s table.
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